This paper presents an evaluation of the applicability of homogeneous charge compression ignition (HCCI) engines for small-scale cogeneration (<1MWe) in comparison to five previously analyzed prime movers. The five comparator prime movers include stoichiometric spark-ignited (SI) engines, lean burn SI engines, diesel engines, microturbines, and fuel cells. The investigated option, HCCI engines, is a relatively new type of engine that has some fundamental differences with respect to other prime movers. The prime movers are compared by calculating electric and heating efficiency, fuel consumption, nitrogen oxide (NOx) emissions, and capital and fuel costs. Two cases are analyzed. In case 1, the cogeneration facility requires combined power and heating. In case 2, the requirement is for power and chilling. The results show that HCCI engines closely approach the very high fuel utilization efficiency of diesel engines without the high emissions of NOx and the expensive diesel fuel. HCCI engines offer a new alternative for cogeneration that provides a combination of low cost, high efficiency, low emissions, and flexibility in operating temperatures that can be optimally tuned for cogeneration systems. HCCI is the most efficient engine technology that meets the strict 2007 CARB NOx standards for cogeneration engines, and merits more detailed analysis and experimental demonstration.

1.
Tsukida
,
N.
,
Okamoto
,
K.
,
Abe
,
T.
, and
Takemoto
,
T.
, 1999, “
Development of Miller Cycle Gas Engine for Cogeneration
,”
Proc. of ASME Advanced Energy Systems Division-1999
,
ASME
, New York, AES-Vol.
39
, pp.
453
457
.
2.
California Energy Commission
, 2000, “
Market Transformation for Combined Heat and Power Systems in California
,” Consultant Report P700–00–012,
Onsite Sycom Energy Corp.
, Carlsbad, CA.
3.
Ferguson
,
C. R.
, 1986,
Internal Combustion Engines
,
Wiley
, New York.
4.
Flynn
,
P. F.
,
Hunter
,
G. L.
,
Durrett
,
R. P.
,
Farrell
,
L. A.
, and
Akinyemi
,
W. C.
, 2000, “
Minimum Engine Flame Temperature Impacts on Diesel and Spark-Ignition Engine NOx Production
,” SAE Paper No. 2000-01-1177.
5.
Ishizawa
,
M.
,
Okada
,
S.
, and
Yamashita
,
T.
, 2000, “
Highly Efficient Heat Recovery System for Phosphoric Acid Fuel Cells Used for Cooling Telecommunication Equipment
,”
J. Power Sources
0378-7753,
86
, pp.
294
297
.
6.
Larminie
,
J.
, and
Dicks
,
A.
, 2000,
Fuel Cell Systems Explained
,
Wiley
, New York.
7.
Epping
,
K.
,
Aceves
,
S. M.
,
Bechtold
,
R. L.
, and
Dec
,
J. E.
, 2002, “
The Potential of HCCI Combustion for High Efficiency and Low Emissions
,” SAE Paper No. 2002-01-1923.
8.
Sharke
,
P.
, 2000, “
Otto or Not, Here it Comes
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
122
(
6
), pp.
62
66
.
9.
Martinez-Frias
,
J.
,
Aceves
,
S. M.
,
Flowers
,
D.
,
Smith
,
J. R.
, and
Dibble
,
R.
, 2000, “
HCCI Engine Control by Thermal Management
,” SAE Paper No. 2000-01-2869.
10.
Klein
,
S. A.
, and
Alvarado
,
F. L.
, 2002, “
Engineering Equation Solver
,” F-Chart Software, Madison, WI.
11.
Kays
,
W. M.
, and
London
,
A. L.
, 1964,
Compact Heat Exchangers
,
McGraw-Hill
, New York.
12.
Van Wylen
,
G. J.
, and
Sonntag
,
R. E.
, 1978,
Fundamentals of Classical Thermodynamics
,
Wiley
, New York.
13.
Woschni
,
G.
, 1967, “
Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,” SAE Paper No. 670931.
14.
Patton
,
K. J.
,
Nitschke
,
R. G.
, and
Heywood
,
J. B.
, 1989, “
Development and Evaluation of a Friction Model for Spark-Ignition Engines
,” SAE Paper No. 890836.
15.
Lund
,
C. M.
, 1978, “
HCT: A General Computer Program for Calculating Time-Dependent Phenomena Involving One-Dimensional Hydrodynamics, Transport, and Detailed Chemical Kinetics
,” Lawrence Livermore National Laboratory Report UCRL-52504.
16.
Roethlisberger
,
R. P.
, and
Favrat
,
D.
, 2002, “
Comparison Between Direct and Indirect (Prechamber) Spark Ignition in the Case of a Cogeneration Natural Gas Engine, Part 1: Engine Geometrical Parameters
,”
Appl. Therm. Eng.
1359-4311,
22
, pp.
1217
1229
.
17.
ASHRAE
, 1984,
1984 Systems Handbook
, “
Cogeneration Systems
,”
ASHRAE
, Atlanta, Chap. 9, pp.
9.1
9.14
.
18.
Plohberger
,
D. C.
,
Fessl
,
T.
,
Gruber
,
F.
, and
Herdin
,
G. R.
, 1995, “
Advanced Gas Engine Cogeneration Technology for Special Applications
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
117
, pp.
826
831
.
19.
Campanari
,
S.
,
Boncompagni
,
L.
, and
Macchi
,
E.
, 2004, “
Microturbines and Trigeneration: Optimization Strategies and Multiple Engine Configuration Effects
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
92
101
.
20.
Luz-Silveria
,
J.
,
Beyene
,
A.
,
Leal
,
E. M.
,
Santana
,
J. A.
, and
Okada
,
D.
, 2002, “
Thermoeconomic Analysis of a Cogeneration System of a University Campus
,”
Appl. Therm. Eng.
1359-4311,
22
, pp.
1471
1483
.
21.
Borbely-Bartis
,
A. M.
,
DeSteese
,
J. G.
, and
Somasundaram
,
S.
, 2000, “
U.S. Installation, Operation, and Performance Standards for Microturbine Generator Sets
,” Pacific Northwest National Laboratory Report PNNL-13277, Richland, WA.
22.
Hiltner
,
J. D.
,
Fiveland
,
S.
,
Agama
,
R.
, and
Willi
,
M.
, 2002, “
System Efficiency Issues for Natural-Gas-Fueled HCCI Engines in Heavy-Duty Stationary Applications
,” SAE Paper No. 2002-01-0417.
23.
Olsson
,
J.-O.
,
Tunestal
,
P.
, and
Johansson
,
B.
, 2001, “
Closed-Loop Control of an HCCI Engine
,” SAE Paper No. 2001-01-1031.
24.
Herold
,
K. E.
,
Radermacher
,
R.
, and
Klein
,
S.
, 1996,
Absorption Chillers and Heat Pumps
,
CRC Press
, Boca Raton.
25.
Goodheart
,
K. A.
,
Klein
,
S. A.
, and
Schultz
,
K.
, 2002, “
Economic Assessment of Low Firing Temperature Absorption Chiller Systems
,”
ASHRAE Trans.
0001-2505,
108
(
1
), pp.
771
780
.
26.
Nellen
,
C.
, and
Boulouchos
,
K.
, “
Natural Gas Engines for Cogeneration: Highest Efficiency and Near-Zero-Emissions Through Turbocharging, EGR and 3-Way Catalytic Converter
,” SAE Paper No. 2000-01-2825.
27.
Benelmir
,
R.
, and
Feidt
,
M.
, 1998, “
Energy Cogeneration Systems and Energy Management Strategy
,”
Energy Convers. Manage.
0196-8904,
39
(
16–18
), pp.
1791
1802
.
You do not currently have access to this content.