The aim of the paper is to investigate possible design modifications in tubular solid oxide fuel cell geometry to increase its performance. The analysis of the cell performances is conducted on the basis of the entropy generation. The use of this technique makes it possible to identify the phenomena provoking the main irreversibilities, understand their causes and propose changes in the system design and operation. The different contributions to the entropy generation are analyzed in order to develop new geometries that increase the fuel cell efficiency. To achieve this purpose, a CFD model of the cell is used. The model includes energy equation, fluid dynamics in the channels and in porous media, current transfer, chemical reactions, and electrochemistry. The geometrical parameters of the fuel cell are modified to minimize the overall entropy generation.

1.
Calì
,
M.
,
Santarelli
,
M. G. L.
, and
Leone
,
P.
, 2006, “
Computer Experimental Analysis of the CHP Performance of a 100 kWe SOFC Field Unit by a Factorial Design
,”
J. Power Sources
0378-7753,
156
, pp.
400
413
.
2.
Singhal
,
S. C.
, and
Kendall
,
K.
, 2003,
High Temperature Solid Oxide Fuel Cells. Fundamentals, Design and Applications
,
Elsevier
,
Oxford, UK
.
3.
Gaggioli
,
A.
, and
Dunbar
,
W. R.
, 1993, “
EMF, Maximum Power and Efficiency of Fuel Cells
,”
ASME J. Energy Resour. Technol.
0195-0738,
112
, pp.
114
123
.
4.
Nagel
,
F. P.
,
Schildhauer
,
T. J.
,
Biollaz
,
S. M. A.
, and
Wokaun
,
A.
, 2008, “
Performance Comparison of Planar, Tubular and δ8 Solid Oxide Fuel Cells Using a Generalized Finite Volume Model
,”
J. Power Sources
0378-7753,
184
, pp.
143
164
.
5.
Vora
,
S. D.
, 2006, “
Development of High Power Density Sealless SOFCs (2006)
,”
2007 Fuel Cell Seminar
, Honolulu, HI, Nov. 13–17.
6.
Huang
,
K.
, 2007, “
Development of DeltaType SOFCs at Siemens Stationary Fuel Cells
,”
2007 Fuel Cell Seminar
, San Antonio, TX, Oct. 15–19.
7.
Hwang
,
J. J.
,
Chen
,
C. K.
, and
Lai
,
D. Y.
, 2005, “
Detailed Characteristic Comparison Between Planar and MOLB-Type SOFCs
,”
J. Power Sources
0378-7753,
143
, pp.
75
83
.
8.
Kakaç
,
S.
,
Pramuanjaroenkij
,
A.
, and
Zhou
,
X. Y.
, 2007, “
A Review of Numerical Modeling of Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
0360-3199,
32
, pp.
761
786
.
9.
Malkow
,
T.
,
Winkler
,
W.
,
Nehter
,
P.
,
Ubertini
,
S.
,
Bove
,
R.
,
Andreassi
,
L.
,
Sammes
,
N. M.
,
Celik
,
I. B.
,
Pakalapati
,
S. R.
,
Grosso
,
S.
,
Repetto
,
L.
,
Costamagna
,
P.
,
Verda
,
V.
,
Ciano
,
C.
,
Liese
,
E. A.
,
Ferrari
,
M. L.
,
VanOsdol
,
J.
,
Tucker
,
D.
,
Gemmen
,
R. S.
, and
Yakabe
,
H.
, 2008,
Modeling Solid Oxide Fuel Cells: Methods, Procedures and Techniques (Fuel Cells and Hydrogen Energy)
,
R.
Bove
and
S.
Ubertini
, eds.,
Springer
,
New York
.
10.
Krishna
,
R.
, and
Wesselingh
,
J. A.
, 1997, “
The Maxwell-Stefan Approach to Mass Transfer
,”
Chem. Eng. Sci.
0009-2509,
52
(
6
), pp.
861
911
.
11.
Yakabe
,
H.
,
Hishinuma
,
M.
,
Uratani
,
M.
,
Matsuzaki
,
Y.
, and
Yasuda
,
I.
, 2000, “
Evaluation and Modeling of Performance of Anode-Supported Solid Oxide Fuel Cell
,”
J. Power Sources
0378-7753,
86
, pp.
423
431
.
12.
Fuller
,
E. N.
,
Schettler
,
P. D.
, and
Giddings
,
J. C.
, 1966, “
A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients
,”
Ind. Eng. Chem.
0019-7866,
58
(
5
), pp.
18
27
.
13.
Suwanwarangkul
,
R.
,
Croiset
,
E.
,
Fowler
,
M. W.
,
Douglas
,
P. L.
,
Entchev
,
E.
, and
Douglas
,
M. A.
, 2003, “
Performance Comparison of Fick’s, Dusty-Gas and Stefan–Maxwell Models to Predict the concentration Overpotential of a SOFC Anode
,”
J. Power Sources
0378-7753,
122
, pp.
9
18
.
14.
Veldsink
,
J. W.
,
van Damme
,
R. M. J.
,
Versteeg
,
G. F.
, and
van Swaaij
,
W. P. M.
, 1995, “
The Use of the Dusty-Gas Model for the Description of Mass Transport With Chemical Reaction in Porous Media
,”
Chem. Eng. J.
0300-9467,
57
, pp.
115
125
.
15.
Lehnert
,
W.
,
Meusinger
,
J.
, and
Thom
,
F.
, 2000, “
Modelling of Gas Transport Phenomena in SOFC Anodes
,”
J. Power Sources
0378-7753,
87
, pp.
57
63
.
16.
Haynes
,
C.
, and
Wepfer
,
W. J.
, 2001, “
Characterizing Heat Transfer Within a Commercial-Grade Tubular Solid Oxide Fuel Cell for Enhanced Thermal Management
,”
Int. J. Hydrogen Energy
0360-3199,
26
, pp.
369
379
.
17.
Sciacovelli
,
A.
, and
Verda
,
V.
, 2009, “
Thermodynamic Optimization of a Monolithic-Type Solid Oxide Fuel Cell
,”
Proceedings of the 22nd International Conference on Efficiency, Cost, Optimization Simulation and Environmental Impact of Energy Systems
, Foz do Iguaçu, Paraná, Brazil, Aug. 31–Sep. 3.
18.
Sciacovelli
,
A.
, and
Verda
,
V.
, 2009, “
Entropy Generation Analysis in a Monolithic-Type Solid Oxide Fuel Cell (SOFC)
,”
Energy
0360-5442,
34
, pp.
850
865
.
19.
Costamagna
,
P.
, and
Honegger
,
K.
, 1998, “
Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
3995
4006
.
20.
Hwang
,
J. J.
,
Chen
,
C. K.
, and
Lai
,
D. Y.
, 2005, “
Computational Analysis of Species Transport and Electrochemical Characteristics of a MOLB-Type SOFC
,”
J. Power Sources
0378-7753,
140
, pp.
235
242
.
21.
Li
,
P.
, and
Chyu
,
M. K.
, 2003, “
Simulation of the Chemical/Electrochemical Reactions and Heat/Mass Transfer for a Tubular SOFC in a Stack
,”
J. Power Sources
0378-7753,
124
, pp.
487
498
.
22.
Yang
,
Y.
,
Wang
,
G.
,
Zhang
,
H.
, and
Xia
,
W.
, 2007, “
Computational Analysis of Thermo-Fluid and Electrochemical Characteristics of MOLB-Type SOFC Stacks
,”
J. Power Sources
0378-7753,
173
, pp.
233
239
.
23.
Bejan
,
A.
, 1982,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
24.
Teng
,
H.
,
Kinoshita
,
C. M.
,
Masutani
,
S. M.
, and
Zhou
,
J.
, 1998, “
Entropy Generation in Multicomponent Reacting Flows
,”
ASME J. Energy Resour. Technol.
0195-0738,
120
, pp.
226
232
.
25.
Rao
,
S. S.
, 1996,
Engineering Optimization: Theory and Practice
, 3rd ed.,
Wiley
,
New York
.
26.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
You do not currently have access to this content.