The effects of hydrogen addition, diluent addition, injection pressure, chamber pressure, chamber temperature and turbulence intensity on methane–air partially premixed turbulent combustion have been studied experimentally using a constant volume combustion chamber (CVCC). The fuel–air mixture was ignited by centrally located electrodes at given spark delay times of 1, 5, 40, 75, and 110 ms. Experiments were performed for a wide range of hydrogen volumetric fractions (0% to 40%), simulated diluent volumetric fractions (0% to 25% as a diluent), injection pressures (30–90 bar), chamber pressures (1–3 bar), chamber temperatures (298–432 K) and overall equivalence ratios of 0.6, 0.8, and 1.0. Flame propagation images via the Schlieren/Shadowgraph technique, combustion characteristics via pressure derived parameters and pollutant concentrations were analyzed for each set of conditions. The results showed that peak pressure and maximum rate of pressure rise increased with the increase in chamber pressure and temperature while changing injection pressure had no considerable effect on pressure and maximum rate of pressure rise. The peak pressure and maximum rate of pressure rise increased, while combustion duration decreased with simultaneous increase of hydrogen content. The lean burn limit of methane–air turbulent combustion was improved with hydrogen addition. Addition of diluent increased combustion instability and misfiring while decreasing the emission of nitrogen oxides (NOx).

References

1.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Al-Mulki
,
J.
, and
Metghalchi
,
H.
,
2011
, “
Laminar Burning Speeds of Ethanol/Air/Diluent Mixtures
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1021
1027
.10.1016/j.proci.2010.05.105
2.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2011
, “
The Effect of Diluent on Flame Structure and Laminar Burning Speed of JP-8/Oxidizer/Diluent Premixed Flames
,”
Fuel
,
90
, pp.
1476
1486
.10.1016/j.fuel.2010.11.020
3.
Moghaddas
,
A.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
M.
,
2012
, “
Laminar Burning Speed Measurement of Premixed n-decane/air Mixtures Using Spherically Expanding Flames at High Temperatures and Pressures
,”
Combust. Flame
,
159
, pp.
1437
1443
.10.1016/j.combustflame.2011.12.005
4.
Moghaddas
,
A.
,
Bennett
,
C.
,
Eisazadeh-far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Measurement of Laminar Burning Speed and Determination of Onset of Autoignition of Jet-A/Air and JP-8/Air Mixtures in a Constant Volume Spherical Chamber
,”
ASME J. Energy Resour. Technol.
,
134
, p.
022205
.10.1115/1.4006480
5.
Badr
,
O. A.
,
Elsayed
,
N.
, and
Karim
,
G. A.
,
1996
, “
An Investigation of the Lean Operational Limits of Gas Fueled Spark Ignition Engines
,”
ASME J. Energy Resour. Technol.
,
118
, pp.
159
163
.10.1115/1.2792708
6.
Boretti
,
A. A.
,
2012
, “
Energy Recovery in Passenger Cars
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022203
.10.1115/1.4005699
7.
Cho
,
H. M.
, and
He
,
B. Q.
,
2007
, “
Spark Ignition Natural Gas Engines—A Review
,”
Energy Convers. Manage.
,
48
(
2
), pp.
608
618
.10.1016/j.enconman.2006.05.023
8.
Onishi
,
S.
,
Hong
,
J. S.
,
Shoda
,
K.
,
Do
,
J. P.
, and
Kato
,
S.
,
1979
, “
Active Thermo-Atmosphere Combustion (ATAC) e A New Combustion Process for Internal Combustion Engines
,” SAE Paper No. 790501.
9.
Pourkhesalian
,
A. M.
,
Shamekhi
,
A. H.
, and
Salimi
,
F.
,
2010
, “
Alternative Fuel and Gasoline in an SI Engine: A Comparative Study of Performance and Emissions Characteristics
,”
J. Fuel
,
89
(
5
), pp.
1056
1063
.10.1016/j.fuel.2009.11.025
10.
Askari
,
O.
,
Hannani
,
S. K.
, and
Ebrahimi
,
R.
,
2012
, “
Improvement and Experimental Validation of A Multi-Zone Model for Combustion and NO Emissions in CNG Fueled Spark Ignition Engine
,”
J. Mech. Sci. Technol.
,
26
(
4
), pp.
1205
1212
.10.1007/s12206-012-0229-6
11.
Fino
,
D.
,
Russo
,
N.
,
Saracco
,
G.
, and
Specchia
,
V.
,
2007
, “
Supported Pd-Perovskite Catalyst for CNG Engines' Exhaust Gas Treatment
,”
International Conference on Perovskites at EMPA, Properties and Potential Applications
, vol.
35
(
2-4
), pp.
501
511
.
12.
Huang
,
Z. H.
,
Zeng
,
K.
, and
Yang
,
Z. L.
,
2002
, “
Visualization Study of Natural Gas Direct Injection Combustion
,”
Trans. CSICE
,
20
(
6
), pp.
511
520
.
13.
Huang
,
Z. H.
,
Zeng
,
K.
, and
Yang
,
Z. L.
,
2001
, “
Study on Combustion Characteristics of Direct Injection Natural Gas Engine by Using a Rapid Compression Machine
,”
Trans. CSICE
,
19
(
4
), pp.
314
322
.
14.
Gurgenci
,
H.
, and
Aminossadati
,
S. M.
,
2009
, “
Investigating the Use of Methane as Diesel Fuel in Off-Road Haul Road Truck Operations
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
032202
.10.1115/1.3185350
15.
Narayanan
,
G.
, and
Shrestha
,
B.
,
2009
, “
A Simulation Model of a Four-Stroke Spark Ignition Engine Fueled With Landfill Gases and Hydrogen Mixtures
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
032203
.10.1115/1.3185344
16.
Katashiba
,
H.
,
Kawamoto
,
M.
,
Sumida
,
M.
,
Fukutomi
,
N.
, and
Kawajiri
,
K.
,
2006
, “
Improvement of Center Injection Spray Guied DISI Performance
,” SAE Paper No. 2006-01-1001.
17.
Mitroglou
,
N.
,
Nouri
,
J. M.
,
Yan
,
Y.
,
Gavaises
,
M.
, and
Arcoumanis
,
M.
,
2007
, “
Spray Structure Generated by Multi-Hole Injectors for Gasoline Direct-Injection Engines
,” SAE Paper No. 2007-01-1417.
18.
Stach
,
T.
,
Schlerfer
,
J.
, and
Vorbach
,
M.
,
2007
, “
New Generation Mult-Hole Injector for Direct-Injection SI Engines
,” SAE Paper No. 2007-01-1404.
19.
Van
,
B. P.
, and
Keller
,
J. O.
,
1998
, “
A Hydrogen Fuelled Internal Combustion Engine Designed for Single Speed/Power Operation
,”
Int. J. Hydrogen Energy
,
23
(
7
), pp.
603
609
.10.1016/S0360-3199(97)00100-6
20.
Shrestha
,
S. B.
, and
Karim
,
G. A.
,
1999
, “
Hydrogen as an Additive to Methane for Spark Ignition Engine Applications
,”
Int. J. Hydrogen Energy
,
24
(
6
), pp.
577
586
.10.1016/S0360-3199(98)00103-7
21.
Das
,
L. M.
,
Gulati
,
R.
, and
Gupta
,
P. K.
,
2000
, “
A Comparative Evaluation of the Performance Characteristics of a Spark Ignition Engine Using Hydrogen and Compressed Natural Gas as Alternative Fuels
,”
Int. J. Hydrogen Energy
,
25
(
8
), pp.
783
793
.10.1016/S0360-3199(99)00103-2
22.
Sierens
,
R.
, and
Rosseel
,
E.
,
2000
, “
Variable Composition Hydrogen/Natural Gas Mixtures for Increased Engine Efficiency and Decreased Emissions
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
135
140
.10.1115/1.483191
23.
Bauer
,
C. G.
, and
Forest
,
T. W.
,
2001
, “
Effect of Hydrogen Addition on the Performance of Methane-Fueled Vehicles. Part I: Effect on S.I. Engine Performance
,”
Int. J. Hydrogen Energy
,
26
(
1
), pp.
55
70
.10.1016/S0360-3199(00)00067-7
24.
Akansu
,
S. O.
,
Dulger
,
Z.
,
Kahraman
,
N.
, and
Veziroǧlu
,
T. N.
,
2004
, “
Internal Combustion Engines Fueled by Natural Gas–Hydrogen Mixtures
,”
Int. J. Hydrogen Energy
,
29
(
14
), pp.
1527
1539
.10.1016/j.ijhydene.2004.01.018
25.
Bysveen
,
M.
,
2007
, “
Engine Characteristics of Emissions and Performance Using Mixtures of Natural Gas and Hydrogen
,”
Energy
,
32
(
4
), pp.
482
489
.10.1016/j.energy.2006.07.032
26.
Sita
,
A. V.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2000
, “
Effect of Hydrogen Induction on the Performance of a Natural-Gas Fuelled Lean-Burn SI Engine
,”
J. Inst. Energy
,
73
(
496
), pp.
143
148
.
27.
Huang
,
Z.
,
Wang
,
J.
,
Liu
,
B.
,
Zeng
,
K.
,
Yu
,
J.
, and
Jiang
,
D.
,
2006
, “
Combustion Characteristics of a Direct-Injection Engine Fueled With Natural Gas–Hydrogen Mixtures
,”
Energy Fuels
,
20
(
2
), pp.
540
546
.10.1021/ef0502453
28.
Huang
,
Z.
,
Wang
,
J.
,
Liu
,
B.
,
Zeng
,
K.
,
Yu
,
J.
, and
Jiang
,
D.
,
2006
, “
Combustion Characteristics of a Direct-Injection Engine Fueled With Natural Gas–Hydrogen Blends Under Various Injection Timings
,”
Energy Fuels
,
20
(
4
), pp.
1498
1504
.10.1021/ef060032t
29.
Huang
,
Z.
,
Wang
,
J.
,
Liu
,
B.
,
Zeng
,
K.
,
Yu
,
J.
, and
Jiang
,
D.
,
2007
, “
Combustion Characteristics of a Direct-Injection Engine Fueled With Natural Gas–Hydrogen Blends Under Different Ignition Timings
,”
Fuel
,
86
(
3
), pp.
381
387
.10.1016/j.fuel.2006.07.007
30.
Hoekstra
,
R. L.
,
Collier
,
K.
,
Mulligan
,
N.
, and
Chew
,
L.
,
1995
, “
Experimental Study of a Clean Burning Vehicle Fuel
,”
Int. J. Hydrogen Energy
,
20
(
9
), pp.
737
745
.10.1016/0360-3199(95)00008-2
31.
Bell
,
S. R.
, and
Gupta
,
M.
,
1997
, “
Extension of the Lean Operating Limit for Natural Gas Fueling of a Spark Ignited Engine Using Hydrogen Blending
,”
Combust. Sci. Technol.
,
123
(
1–6
), pp.
23
48
.10.1080/00102209708935620
32.
Allenby
,
S.
,
Chang
,
W. C.
,
Megaritis
,
A.
, and
Wyszyński
,
M. L.
,
2001
, “
Hydrogen Enrichment: A Way to Maintain Combustion Stability in a Natural Gas Fuelled Engine With Exhaust Gas Recirculation, the Potential of Fuel Reforming
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
,
215
(
3
), pp.
405
418
.10.1243/0954407011525737
33.
Gäfvert
,
M.
,
Årzén
,
K. E.
,
Pedersen
,
L. M.
, and
Bernhardsson
,
B.
,
2004
, “
Control of GDI Engines Using Torque Feedback Exemplified By Simulations
,”
J. Control Eng. Pract.
,
12
(
2
), pp.
165
180
.10.1016/S0967-0661(03)00020-0
34.
Van Der Wege
,
B. A.
,
Han
,
Z.
,
Lyer
,
C. O.
,
Munoz
,
R. B.
,and
Yi
,
J.
,
2003
, “
Development and Analysis of a Spray-Guided DISI Combustion System Concept
,” SAE Paper No. 2003-01-3105.
35.
Alkidas
,
A. C.
,
2007
,“
Combustion Advancements in Gasoline Engines
,”
J. Energy Convers. Manage.
,
48
(
11
), pp.
2751
2761
.10.1016/j.enconman.2007.07.027
36.
Soylu
,
S.
,
2005
, “
Examination of Combustion Characteristics and Phasing Strategies of a Natural Gas HCCI Engine
,”
J. Energy Convers. Manage.
,
46
(
1
), pp.
101
119
.10.1016/j.enconman.2004.02.013
37.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2012
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
.10.1115/1.4007911
38.
Hajialimohammadi
,
A.
,
Ahmadisoleymani
,
S.
,
Abdullah
,
A.
,
Askari
,
O.
, and
Rezai
,
F.
,
2012
, “
Design and Manufacturing of a Constant Volume Test Combustion Chamber for Jet and Flame Visualization of CNG Direct Injection
,”
Appl. Mech. Mater.
,
217
, pp.
2539
2545
.10.4028/www.scientific.net/AMM.217-219.2539
39.
Coleman
,
H. W.
, and
Steele
,
W. G.
, Jr.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
,
John Wiley & Sons
,
New York
.
40.
Heywood
,
J. B.
,
1983
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.