The performance of a lithium-ion battery is significantly dependent on temperature conditions. At subzero temperatures, due to higher resistances, it shows lower capacity and power availability that may affect adversely applications of these batteries in vehicles particularly in cold climate environment. To investigate internal resistances, LiMnNiO and LiFePO4 batteries were tested at wide temperature ranges from 50 °C to −20 °C. Using impedance spectroscopy, major internal resistances such as cathode interfacial, anode interfacial and conductive, have been identified by using a simple equivalent circuit. Results showed that at subzero temperatures the anode interfacial resistance was almost twice than the cathode interfacial resistance. A simple model of the individual resistance increment as a function of temperature has also been presented at the end of the paper. In addition, dependency of cell impedance on state of charge (SOC) and temperature has also been analyzed from the test results.

References

1.
Horiba
,
T.
,
Maeshima
,
T.
,
Matsumura
,
T.
,
Koseki
,
M.
,
Arai
,
J.
, and
Muranaka
,
Y.
,
2005
, “
Applications of High Power Density Lithium Ion Batteries
,”
J. Power Sources
,
146
(
1–2
), pp.
107
110
.10.1016/j.jpowsour.2005.03.205
2.
Sternad
,
M.
,
Cifrain
,
M.
,
Watzenig
,
D.
,
Brasseur
,
G.
, and
Winter
,
M.
,
2009
, “
Condition Monitoring of Lithium-Ion Batteries for Electric and Hybrid Electric Vehicles
,”
Elektrotech. Informationstech.
,
126
(
5
), pp.
186
193
.10.1007/s00502-009-0644-2
3.
Nazri
,
G.-A.
, and
Pistoia
,
G.
(eds.),
2003
,
Lithium Batteries: Science and Technology
,
Springer
,
Berlin, Germany
.
4.
Garcia-Valle
,
R.
, and
Peças Lopes
,
J. A.
(Eds.),
2012
,
Electric Vehicle Integration Into Modern Power Networks
,
Springer
,
New York
.
5.
Srinivasan
,
V.
,
2008
, “
Batteries for Vehicular Applications
,”
AIP Conference Proceedings
, Berkeley, CA, Mar. 1–2, pp.
283
296
.
6.
Hamut
,
H. S.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2014
, “
Experimental and Theoretical Efficiency Investigation of Hybrid Electrical Vehicle Battery Thermal Management Systems
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011202
.10.1115/1.4026267
7.
Capata
,
R.
, and
Sciubba
,
E.
,
2013
, “
The Low Emission Turbogas Hybrid Vehicle Concept—Preliminary Simulation and Vehicle Packaging
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032203
.10.1115/1.4024118
8.
West
,
R. E.
, and
Kreith
,
F.
,
2006
, “
A Vision for a Secure Transportation System Without Hydrogen and Oil
,”
ASME J. Energy Resour. Technol.
,
128
(
3
), pp.
236
243
.10.1115/1.2213277
9.
Huang
,
C.-K.
,
Sakamoto
,
J. S.
,
Wolfenstine
,
J.
, and
Surampudi
,
S.
,
2000
, “
The Limits of Low-Temperature Performance of Li-Ion Cells
,”
J. Electrochem. Soc.
,
147
(
8
), pp.
2893
2896
.10.1149/1.1393622
10.
Nagasubramanian
,
G.
,
2001
, “
Electrical Characteristics of 18650 Li-Ion Cells at Low Temperatures
,”
J. Appl. Electrochem.
,
31
(
1
), pp.
99
104
.10.1023/A:1004113825283
11.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2003
, “
The Low Temperature Performance of Li-ion Batteries
,”
J. Power Sources
,
115
(
1
), pp.
137
140
.10.1016/S0378-7753(02)00618-3
12.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2006
, “
Charge and Discharge Characteristics of a Commercial LiCoO2-based 18650 Li-Ion Battery
,”
J. Power Sources
,
160
(
2
), pp.
1403
1409
.10.1016/j.jpowsour.2006.03.037
13.
Chatterjee
,
K.
,
Majumdar
,
P.
,
Schroeder
,
D.
, and
Kilaparti
,
S. R.
, “
Analysis of Li-Ion Battery Characteristics and Thermal Behavior
,”
ASME
Paper No. HT2013-17815.10.1115/HT2013-17815
14.
Ji
,
Y.
,
Zhang
,
Y.
, and
Wang
,
C.-Y.
,
2013
, “
Li-Ion Cell Operation at Low Temperatures
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A636
A649
.10.1149/2.047304jes
15.
Arendas
,
A.
,
Majumdar
,
P.
,
Schroeder
,
D.
, and
Kilaparti
,
S. R.
,
2014
, “
Experimental Investigation of the Thermal Characteristics of Li-Ion Battery for Use in Hybrid Locomotives
,”
J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041003
.10.1115/1.4026987
16.
Cogger
,
N. D.
, and
Evans
,
N. J.
,
2009
, “
An Introduction to Electrochemical Impedance Measurement
,” Solatron Analytical, Technical Report No. 6.
17.
Do
,
D. V.
,
Forgez
,
C.
,
El Kadri Benkara
,
K.
, and
Friedrich
,
G.
,
2009
, “
Impedance Observer for a Li-Ion Battery Using Kalman Filter
,”
IEEE Trans. Veh. Technol.
,
58
(
8
), pp.
3930
3937
.10.1109/TVT.2009.2028572
18.
Birkl
,
C. R.
, and
Howey
,
D. A.
,
2013
, “
Model Identification and Parameter Estimation for LiFePO4 Batteries
,”
Hybrid and Electric Vehicles Conference 2013 (HEVC 2013)
, IET, London, UK, Nov. 6–7, pp.
1
6
.
19.
Tippmanna
,
S.
,
Walpera
,
D.
,
Balboaa
,
L.
,
Spiera
,
B.
, and
Bessler
,
W. G.
,
2014
, “
Low-temperature Charging of Lithium-ion Cells Part I: Electrochemical Modeling and Experimental Investigation of Degradation Behavior
,”
J. Power Sources
,
252
(2014), pp.
306
316
.
20.
Rodrigues
,
S.
,
Munichandraiah
,
N.
, and
Shukla
,
A. K.
,
1999
, “
AC Impedance and State-of-charge Analysis of a Sealed Lithium-ion Rechargeable Battery
,”
J. Solid State Electrochem.
,
3
(
7–8
), pp.
397
405
.10.1007/s100080050173
21.
Zhang
,
S. S.
,
Xu
,
K.
, and
Jow
,
T. R.
,
2004
, “
Electrochemical Impedance Study on the Low Temperature Performance of Li-ion Batteries
,”
Electrochim. Acta
,
49
(
7
), pp.
1057
1061
.10.1016/j.electacta.2003.10.016
22.
Seki
,
S.
,
Kihira
,
N.
,
Mita
,
Y.
,
Kobayashi
,
T.
,
Takei
,
K.
,
Ikeya
,
T.
,
Miyashiro
,
H.
, and
Terada
,
N.
,
2011
, “
AC Impedance Study of High-Power Lithium-Ion Secondary Batteries—Effect of Battery Size
,”
J. Electrochem. Soc.
,
158
(
2
), pp.
A163
A166
.10.1149/1.3525277
23.
Yoon
,
S.
,
Hwang
,
H.
,
Lee
,
C. W.
,
Ko
,
H. S.
, and
Han
,
K. H.
,
2011
, “
Power Capability Analysis in Lithium Ion Batteries Using Electrochemical Impedance Spectroscopy
,”
J. Electroanal. Chem.
,
655
(
1
), pp.
32
38
.10.1016/j.jelechem.2011.02.013
24.
Marcicki
,
J.
,
Rizzoni
,
G.
,
Conlisk
,
A. T.
, and
Canova
,
M.
,
2011
, “
A Reduced-Order Electrochemical Model of Lithium-Ion Cells for System Identification of Battery Aging
,”
ASME Dynamic Systems and Control Conference
, Arlington, VA, Oct. 31–Nov. 2, pp.
709
716
.
25.
Purkayastha
,
R.
, and
McMeeking
,
R. M.
,
2012
, “
A Linearized Model for Lithium Ion Batteries and Maps for Their Performance and Failure
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031021
.10.1115/1.4005962
26.
Prasad
,
G. K.
, and
Rahn
,
C. D.
,
2014
, “
Reduced Order Impedance Models of Lithium Ion Batteries
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
4
), p.
041012
.10.1115/1.4026652
27.
Barnes
,
J.
,
Battaglia
,
V.
,
Belt
,
J.
,
Coates
,
C.
,
Cost
,
H.
,
Dunning
,
J.
,
Duong
,
T.
,
Habib
,
A.
,
Haskins
,
H.
,
Heinrich
,
B.
,
Henriksen
,
G.
,
Hunt
,
G.
,
Lucas
,
G.
,
Miller
,
T.
,
Mikkor
,
M.
,
Minck
,
B.
,
Motloch
,
C.
,
Murphy
,
T.
,
Rogers
,
S.
,
Sloane
,
C.
,
Sutula
,
R. A.
,
Tartamella
,
T.
,
Tataria
,
H.
, and
Swan
,
D.
,
2001
, PNGV Battery Test Manual, DOE/ID-10597, Rev. 3.
28.
Isaacson
,
M. J.
,
Daman
,
M. E.
, and
Hollandsworth
,
R. P.
,
1997
, “
Li-ion Batteries for Space Applications
,”
Energy Conversion Engineering Conference
, Vol.
1
, Honolulu, HI, Jul. 27–Aug. 1, pp.
31
34
.
29.
Li
,
J.
,
Murphy
,
E.
,
Winnick
,
J.
, and
Kohl
,
P. A.
,
2001
, “
Studies on the Cycle Life of Commercial Lithium Ion Batteries During Rapid Charge–Discharge Cycling
,”
J. Power Sources
,
102
(
1–2
), pp.
294
301
.10.1016/S0378-7753(01)00821-7
30.
Li
,
R.
,
Wu
,
J.
,
Wang
,
H.
, and
Li
,
G.
,
2010
, “
Prediction of State of Charge of Lithium-ion Rechargeable Battery with Electrochemical Impedance Spectroscopy Theory
,”
2010 the 5th IEEE Conference on Industrial Electronics and Applications (ICIEA)
, Taichung, Taiwan, June 15–17, pp.
684
688
.
31.
Nagasubramanian
,
G.
,
Ingersoll
,
D.
,
Doughty
,
D.
,
Radzykewycz
,
D.
,
Hill
,
C.
, and
Marsh
,
C.
,
1999
, “
Electrical and Electrochemical Performance Characteristics of Large Capacity Lithium-Ion Cells
,”
J. Power Sources
,
80
(
1–2
), pp.
116
118
.10.1016/S0378-7753(98)00255-9
32.
Mita
,
Y.
,
2008
, “
Development of Quantification Method About Lithium Battery Degradation-Nondestructive Analysis of Cathode and Anode Electrodes Characteristics by Using Thermal/Electrical Responses
,” CRIEPI Report No. Q07023.
You do not currently have access to this content.