The modeling of the mean entropy generation rate S·"'gen¯ due to combined actions of viscous dissipation, irreversible chemical reaction, thermal conduction and mass diffusion (i.e., T¯1,T¯2,T¯3, and T¯4) in the context of Reynolds averaged Navier–Stokes (RANS) simulations has been analyzed in detail based on a direct numerical simulation (DNS) database with a range of different values of heat release parameter τ, global Lewis number Le, and turbulent Reynolds number Ret spanning both the corrugated flamelets (CF) and thin reaction zones (TRZ) regimes of premixed turbulent combustion. It has been found that the entropy generation due to viscous dissipation T¯1 remains negligible in comparison to the other mechanisms of entropy generation (i.e., T¯2,T¯3, and T¯4) within the flame for all cases considered here. A detailed scaling analysis has been used to explain the relative contributions of , and T¯4 on the overall volumetric entropy generation rate S·"'gen¯ in turbulent premixed flames. This scaling analysis is further utilized to propose models for T¯1,T¯2,T¯3, and T¯4 in the context of RANS simulations. It has been demonstrated that the new proposed models satisfactorily predict T¯1,T¯2,T¯3, and T¯4 for all cases considered here. The accuracies of the models for T¯1,T¯2,T¯3, and T¯4 have been demonstrated to be closely linked to the modeling of dissipation rate of turbulent kinetic energy and scalar dissipation rates (SDRs) in turbulent premixed flames.

References

1.
Puri
,
I. K.
,
1992
, “
Second Law Analysis of Convective Droplet Burning
,”
Int. J. Heat Mass Transfer
,
35
(10), pp.
2571
2578
.10.1016/0017-9310(92)90099-E
2.
Datta
,
A.
, and
Som
,
S. K.
,
1999
, “
Thermodynamic Irreversibilities and Second Law Analysis in a Spray Combustion Process
,”
Combust. Sci. Technol.
,
142
(1–6), pp.
29
54
.10.1080/00102209908924187
3.
Arpaci
,
V. S.
, and
Selamet
,
A.
,
1988
, “
Entropy Production in Flames
,”
Combust. Flame
,
73
(3), pp.
251
259
.10.1016/0010-2180(88)90022-3
4.
Nishida
,
K.
,
Takagi
,
T.
, and
Kinoshita
,
S.
,
2002
, “
Analysis of Entropy Generation and Exergy Loss During Combustion
,”
Proc. Combust. Inst.
,
29
, pp.
869
874
.10.1016/S1540-7489(02)80111-0
5.
Datta
,
A.
,
2000
, “
Entropy Generation in a Confined Laminar Diffusion Flame
,”
Combust. Sci. Technol.
,
159
(1), pp.
39
56
.10.1080/00102200008935776
6.
Briones
,
A. M.
,
Mukhopadhay
,
A.
, and
Aggarwal
,
S.
,
2009
, “
Analysis of Entropy Generation in Hydrogen-Enriched Methane—Air Propagating Triple Flames
,”
Int. J. Hydrogen Energy
,
34
(2), pp.
1074
1083
.10.1016/j.ijhydene.2008.09.103
7.
Som
,
S. K.
,
Agrawal
,
G. K.
, and
Chakraborty
,
S.
,
2007
, “
Thermodynamics of Flame Impingement Heat Transfer
,”
J. Appl. Phys.
,
102
(4), pp.
1
9
.10.1063/1.2769784
8.
Som
,
S. K.
, and
Datta
,
A.
,
2008
, “
Thermodynamic Irreversibilities and Exergy Balance in Combustion Processes
,”
Prog. Energy Combust. Sci.
,
34
(3), pp.
351
376
.10.1016/j.pecs.2007.09.001
9.
O'Kongo
,
N.
, and
Bellan
,
J.
,
2002
, “
Entropy Production of Emerging Turbulent Scales in a Temporal Supercritical n-Heptane/Nitrogen Three-Dimensional Mixing Layer
,”
Proc. Combust. Inst.
,
28
(1), pp.
497
502
.10.1016/S0082-0784(00)80248-9
10.
Safari
,
M.
,
Sheikhi
,
M. R.
,
Janborogzi
,
M.
, and
Metghalchi
,
M.
,
2010
, “
Entropy Transport Equation in Large Eddy Simulation for Exergy Analysis of Turbulent Combustion Systems
,”
Entropy
,
12
(3), pp.
434
444
.10.3390/e12030434
11.
Sheikhi
,
M. R. H.
,
Safari
,
M.
, and
Metghalchi
,
H.
,
2012
, “
Large Eddy Simulation for Local Entropy Generation Analysis of Turbulent Flows
,”
ASME J. Energy Res. Technol.
,
134
(4), p.
0416031
.10.1115/1.4007482
12.
Farran
,
R.
, and
Chakraborty
,
N.
,
2013
, “
A Direct Numerical Simulation Based Analysis of Entropy Generation in Turbulent Premixed Flames
,”
Entropy
,
15
(5), pp.
1540
1566
.10.3390/e15051540
13.
Chen
,
J. H.
,
Choudhary
,
A.
,
de Supinski
,
B.
,
DeVries
,
M.
,
Hawkes
,
E. R.
,
Klasky
,
S.
,
Liao
,
W. K.
,
Ma
,
K. L.
,
Mellor-Crummey
,
J.
,
Podhorski
,
N.
,
Sankaran
,
R.
, and
Shende
,
S.
,
2009
, “
Terascale Direct Numerical Simulations of Turbulent Combustion Using S3D
,”
Comput. Sci. Discovery
,
2
(1), p.
015001
.10.1088/1749-4699/2/1/015001
14.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University
,
Cambridge, UK
, pp.
66
169
.
15.
Jiménez
,
C.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Haworth
,
D.
,
2002
, “
Numerical Simulation and Modeling for Lean Stratified Propane-Air Flames
,”
Combust. Flame
,
128
(1–2), pp.
1
21
.10.1016/S0010-2180(01)00328-5
16.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion. Part I: Nondynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(1–2), pp.
159
180
.10.1016/S0010-2180(02)00400-5
17.
Swaminathan
,
N.
, and
Bray
,
K. N. C.
,
2005
, “
Effect of Dilatation on Scalar Dissipation in Turbulent Premixed Flames
,”
Combust. Flame
,
143
(4), pp.
549
565
.10.1016/j.combustflame.2005.08.020
18.
Grout
,
R.
,
2007
, “
An Age Extended Progress Variable for Conditioned Reaction Rates
,”
Phys. Fluids
,
19
(10), p.
105107
.10.1063/1.2773998
19.
Han
,
I.
, and
Huh
,
K. H.
,
2009
, “
Effects of Karlovitz Number on the Evolution of the Flame Surface Density in Turbulent Premixed Flames
,”
Proc. Combust. Inst.
,
32
(1), pp.
1419
1425
.10.1016/j.proci.2008.07.041
20.
Chakraborty
,
N.
, and
Lipatnikov
,
A. N.
,
2013
, “
Effects of Lewis Number on the Statistics of Conditional Fluid Velocity in Turbulent Premixed Combustion in the Context of Reynolds Averaged Navier Stokes Simulations
,”
Phys. Fluids
,
25
(4), p.
045101
.10.1063/1.4795548
21.
Wang
,
L.
,
Chakraborty
,
N.
, and
Zhang
,
J.
,
2013
, “
Streamline Segment Analysis of Turbulent Premixed Flames
,”
Proc. Combust. Inst.
,
34
(1), pp.
1401
1409
.10.1016/j.proci.2012.06.142
22.
Chakraborty
,
N.
, and
Cant
,
R. S.
,
2009
, “
Effects of Lewis Number on Scalar Transport in Turbulent Premixed Flames
,”
Phys. Fluids
,
21
(3), p.
035110
.10.1063/1.3097007
23.
Chakraborty
,
N.
, and
Cant
,
R. S.
,
2011
, “
Effects of Lewis Number on Flame Surface Density Transport in Turbulent Premixed Combustion
,”
Combust. Flame
,
158
(9), pp.
1768
1787
.10.1016/j.combustflame.2011.01.011
24.
Chakraborty
,
N.
, and
Swaminathan
,
N.
,
2013
, “
Effects of Turbulent Reynolds Number on the Scalar Dissipation Rate Transport in Turbulent Premixed Flames in the Context of Reynolds Averaged Navier Stokes Simulations
,”
Combust. Sci. Technol.
,
185
(4), pp.
676
709
.10.1080/00102202.2012.741635
25.
Chakraborty
,
N.
,
Hartung
,
G.
,
Katragadda
,
M.
, and
Kaminski
,
C. F.
,
2011
, “
A Numerical Comparison of 2D and 3D Density-Weighted Displacement Speed Statistics and Implications for Laser Based Measurements of Flame Displacement Speed
,”
Combust. Flame
,
158
(7), pp.
1372
1390
.10.1016/j.combustflame.2010.11.014
26.
Chakraborty
,
N.
, and
Cant
,
R. S.
,
2013
, “
Turbulent Reynolds Number Dependence of Flame Surface Density Transport in the Context of Reynolds Averaged Navier Stokes Simulations
,”
Proc. Combust. Inst.
,
34
(1), pp.
1347
1356
.10.1016/j.proci.2012.07.071
27.
Tennekes
,
H.
, and
Lumley
,
J. L.
,
1972
,
A First Course in Turbulence
,
MIT, Massachusetts
,
MA
, pp.
59
103
.
28.
Bray
,
K. N. C.
,
1980
, “
Turbulent Flows With Premixed Reactants
,”
Turbulent Reacting Flows
,
Libby
,
P. A.
, and
Williams
,
F. A.
, eds.,
Springer-Verlag
,
Heidelburg
, pp.
115
183
.
29.
Kolla
,
H.
, and
Swaminathan
,
N.
,
2010
, “
Strained Flamelets for Turbulent Premixed Flames II: Laboratory Flame Results
,”
Combust. Flame
,
157
(7), pp.
1274
1289
.10.1016/j.combustflame.2010.03.016
30.
Sadasivuni
,
S.
,
Bulat
,
G.
,
Senderson
,
V.
, and
Swaminathan
,
N.
,
2012
, “
Application of Scalar Dissipation
,”
ASME
Paper No. GT2012-68483. 10.1115/GT2012-68483
31.
Ahmed
,
I.
, and
Swaminathan
,
N.
,
2013
, “
Simulation of Spherically Expanding Turbulent Premixed Flames
,”
Combust. Sci. Technol.
,
185
(10), pp.
1509
1540
.10.1080/00102202.2013.808629
32.
Ma
,
T.
,
Gao
,
Y.
,
Kempf
,
A. M.
, and
Chakraborty
,
N.
,
2014
, “
Validation and Implementation of Algebraic LES Modelling of Scalar Dissipation Rate for Reaction Rate Closure in Turbulent Premixed Combustion
,”
Combust. Flame
.10.1016/j.combustflame.2014.05.023
33.
Chakraborty
,
N.
,
Kolla
,
H.
,
Sankaran
,
R.
,
Hawkes
,
E. R.
,
Chen
,
J. H.
, and
Swaminathan
,
N.
,
2013
, “
Determination of Three-Dimensional Quantities Related to Scalar Dissipation Rate and Its Transport From Two-Dimensional Measurements: Direct Numerical Simulation Based Validation
,”
Proc. Combust. Inst.
,
34
(1), pp.
1151
1162
.10.1016/j.proci.2012.06.040
34.
Chakraborty
,
N.
,
Champion
,
M.
,
Mura
,
A.
, and
Swaminathan
,
N.
,
2011
, “
Scalar-Dissipation-Rate Approach
,”
Turbulent Premixed Flames
,
N.
Swaminathan
, and
K. N. C.
Bray
, eds.,
Cambridge University
,
Cambridge, UK
, pp.
76
102
.
35.
Chakraborty
,
N.
, and
Cant
,
R. S.
,
2005
, “
Effects of Strain Rate and Curvature on Surface Density Function Transport in Turbulent Premixed Flames in the Thin Reaction Zones Regime
,”
Phys. Fluids
,
17
(6), p.
065108
.10.1063/1.1923047
36.
Chakraborty
,
N.
,
Hawkes
,
E. R.
,
Chen
,
J. H.
, and
Cant
,
R. S.
,
2008
, “
Effects of Strain Rate and Curvature on Surface Density Function Transport in Turbulent Premixed CH4-Air and H2-Air Flames: A Comparative Study
,”
Combust. Flame
,
154
(1–2), pp.
259
280
.10.1016/j.combustflame.2008.03.015
37.
Peters
,
N.
,
Terhoeven
,
P.
,
Chen
,
J. H.
, and
Echekki
,
T.
,
1998
, “
Statistics of Flame Displacement Speeds From Computations of 2-D Unsteady Methane-Air Flames
,”
Proc. Combust. Inst.
,
27
(1), pp.
833
839
.10.1016/S0082-0784(98)80479-7
38.
Echekki
,
T.
, and
Chen
,
J. H.
,
1999
, “
Analysis of the Contribution of Curvature to Premixed Flame Propagation
,”
Combust. Flame
,
118
(1–2), pp.
303
311
.10.1016/S0010-2180(99)00006-1
39.
Chakraborty
,
N.
, and
Klein
,
M.
,
2008
, “
Influence of Lewis Number on the Surface Density Function Transport in the Thin Reaction Zones Regime for Turbulent Premixed Flames
,”
Phys. Fluids
,
20
(6), p.
065102
.10.1063/1.2919129
You do not currently have access to this content.