This paper presents a comprehensive experimental evaluation to investigate the effects of adding iron-based and calcium-based nanoparticles (NPs) to nonaqueous drilling fluids (NAFs) as a fluid loss additive and for wellbore strengthening applications in permeable formations. API standard high-pressure-high-temperature (HPHT) filter press in conjunction with ceramic disks is used to quantify fluid loss reduction. Hydraulic fracturing experiments are carried out to measure fracturing and re-opening pressures. A significant enhancement in both filtration and strengthening was achieved by means of in situ prepared NPs. Our results demonstrate that filtration reduction is essential for successful wellbore strengthening; however, excessive reduction could affect the strengthening negatively.

References

1.
Ivan
,
C.
,
Burton
,
J.
, and
Bloys
,
B.
,
2003
, “
How Can We Best Manage Lost Circulation?
,” American Association of Drilling Engineeers (
AADE
)
National Technology Conference
,
Houston, TX
, Apr. 1–3, Paper No. AADE-03-NTCE-38.
2.
Ding
,
Y.
, and
Renard
,
G.
,
2005
, “
Evaluation of Horizontal Well Performance After Drilling-Induced Formation Damage
,”
ASME. J. Energy Resour. Technol.
,
127
(
3
), pp.
257
263
.
3.
Nayberg
,
T. M.
,
1987
, “
Laboratory Study of Lost Circulation Materials for Use in Both Oil-Base and Water-Base Drilling Muds
,”
SPE Drill. Eng.
,
2
(
3
), pp.
229
236
.
4.
Messenger
,
J. U.
,
1981
,
Lost Circulation
,
PennWell Corp.
,
Tulsa, OK
.
5.
Messenger
,
J. U.
, and
McNiel
,
J. S.
,
1952
, “
Lost Circulation Corrective: Time-Setting Clay Cement
,”
J. Pet. Technol.
,
4
(
3
), pp.
59
64
.
6.
Fidan
,
E.
,
Babadagli
,
T.
, and
Kuru
,
E.
,
2004
, “
Use of Cement as Lost-Circulation Material: Best Practices
,”
Canadian International Petroleum Conference
,
Calgary, AB
, Canada, June 8–10, Paper No. PETSOC-2004-090.
7.
Bruton
,
J. R.
,
Ivan
,
C. D.
, and
Heinz
,
T. J.
,
2001
, “
Lost Circulation Control: Evolving Techniques and Strategies to Reduce Downhole Mud Losses
,”
SPE/IADC Drilling Conference
,
Amsterdam, The Netherlands
, Feb. 27–Mar. 1, Paper No. SPE 67735.
8.
Caughron
,
D. E.
,
Renfrow
,
D. K.
,
Bruton
,
J. R.
,
Ivan
,
C. D.
,
Broussard
,
P. N.
,
Bratton
,
T. R.
, and
Standifird
,
W. B.
,
2002
, “
Unique Crosslinking Pill in Tandem With Fracture Prediction Model Cures Circulation Losses in Deepwater Gulf of Mexico
,”
IADC/SPE Drilling Conference
,
Dallas, TX
, Feb. 26–28, Paper No. SPE 74518.
9.
Mata
,
F.
, and
Veiga
,
M.
,
2004
, “
Crosslinked Cements Solve Lost Circulation Problems
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
, Sept. 26–29, Paper No. SPE 90496.
10.
Whitfill
,
D. L.
, and
Wang
,
H.
,
2005
, “
Making Economic Decisions to Mitigate Lost Circulation
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
, Oct. 9–12, Paper No. SPE 95561.
11.
Wang
,
H.
,
Sweatman
,
R. E.
,
Engelman
,
R. E.
,
Deeg
,
W. F. J.
, and
Whitfill
,
D.
,
2005
, “
The Key to Successfully Applying Today's Lost Circulation Solutions
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
, Oct. 9–12, Paper No. SPE 95895.
12.
Wang
,
H.
,
Sweatman
,
R. E.
,
Engelman
,
R. E.
,
Deeg
,
W. F. J.
,
Whitfill
,
D.
,
Soliman
,
M. Y.
, and
Towler
,
B. F.
,
2008
, “
Best Practice in Understanding and Managing Lost Circulation Challenges
,”
SPE Drill. Completion
,
23
(
2
), pp.
168
175
.
13.
Lecolier
,
E.
,
Herzhaft
,
B.
,
Rousseau
,
L.
,
Neau
,
L.
,
Quillien
,
B.
, and
Kieffer
,
J.
,
2005
, “
Development of a Nanocomposite Gel for Lost Circulation Treatment
,”
SPE European Formation Damage Conference
,
Scheveningen, The Netherlands
, May 25–27, Paper No. SPE 94686.
14.
Collins
,
N.
,
Whitfill
,
D.
,
Kharitonov
,
A.
, and
Miller
,
M.
,
2010
, “
Comprehensive Approach to Severe Loss Circulation Problems in Russia
,”
SPE Russian Oil and Gas Conference and Exhibition
,
Moscow
, Oct. 26–28, Paper No. SPE 135704.
15.
Saasen
,
A.
,
Godøy
,
R.
,
Breivik
,
D. H.
,
Solvang
,
S. A.
,
Svindland
,
A.
,
Gausel
,
E.
, and
Frøyland
,
K.
,
2004
, “
Concentrated Solid Suspension as an Alternative to Cements for Temporary Abandonment Applications in Oil Wells
,”
SPE Technical Symposium of Saudi Arabia Section
,
Dhahran, Saudi Arabia
, May 15–17, Paper No. SPE SA-34.
16.
Saasen
,
A.
,
Wold
,
S.
,
Ribesen
,
B. T.
,
Tran
,
T. N.
,
Huse
,
A.
,
Rygg
,
V.
,
Grannes
,
I.
, and
Svindland
,
A.
,
2011
, “
Permanent Abandonment of a North Sea Well Using Unconsolidated Well Plugging Material
,”
SPE Drill. Completion
,
26
(
3
), pp.
371
375
.
17.
Salehi
,
S.
, and
Nygaard
,
R.
,
2012
, “
Numerical Modeling of Induced Fracture Propagation: A Novel Approach for Lost Circulation Materials (LCM) Design in Borehole Strengthening Applications of Deep Offshore Drilling
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
, Oct. 8–10, Paper No. SPE 135155.
18.
Morita
,
N.
,
Black
,
A. D.
, and
Guh
,
G. F.
,
1990
, “
Theory of Lost Circulation Pressure
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
, Sept. 23–26, Paper No. SPE 20409.
19.
Van Oort
,
E.
,
Friedheim
,
J.
,
Pierce
,
T.
, and
Lee
,
J.
,
2011
, “
Avoiding Losses in Depleted and Weak Zones by Constantly Strengthening Wellbores
,”
SPE Drill. Completion
,
26
(
4
), pp.
519
530
.
20.
Mostafavi
,
V.
,
Hareland
,
G.
,
Belayneh
,
M.
, and
Aadnoy
,
B. S.
,
2011
, “
Experimental and Mechanistic Modeling of Fracture Sealing Resistance With Respect to Fluid and Fracture Properties
,”
45th U.S. Rock Mechanics/Geomechanics Symposium
,
San Francisco, CA
, June 26–29, Paper No. ARMA 11-198.
21.
Salehi
,
S.
,
2011
, “
Numerical Simulation of Fracture Propagation and Sealing: Implications for Wellbore Strengthening
,” Ph.D. dissertation, Missouri University of Science and Technology, Rolla, MO.
22.
Fuh
,
G. F.
,
Morita
,
N.
,
Boyd
,
P. A.
, and
McGoffin
,
S. J.
,
1992
, “
A New Approach to Preventing Lost Circulation While Drilling
,”
SPE Annual Technical Conference and Exhibition
,
Washington, DC
, Oct. 4–7, Paper No. SPE 24599.
23.
Dupriest
,
F. E.
,
Smith
,
M. V.
,
Zeilinger
,
C. S.
, and
Shoykhet
,
I. N.
,
2008
, “
Method to Eliminate Lost Returns and Build Integrity Continuously With High-Filtration-Rate Fluid
,”
SPE/IADC Drilling Conference
,
Orlando, FL
, Mar. 4–6, Paper No. SPE/IADC 112656.
24.
Salehi
,
S.
, and
Nygaard
,
R.
,
2014
, “
Full Fluid–Solid Cohesive Finite-Element Model to Simulate Near Wellbore Fractures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012903
.
25.
Kumar
,
A.
, and
Samuel
,
R.
,
2014
, “
Analytical Model to Characterize “Smear Effect” Observed While Drilling With Casing
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
033101
.
26.
Alberty
,
M. W.
, and
McLean
,
M. R.
,
2004
, “
A Physical Model for Stress Cages
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
, Sept. 26–29, Paper No. SPE 90493.
27.
Aadnoy
,
B.
, and
Belayneh
,
M.
,
2004
, “
Elasto-Plastic Fracturing Model for Wellbore Stability Using Non-Penetrating Fluids
,”
J. Pet. Sci. Eng.
,
45
(
3
), pp.
179
192
.
28.
Dupriest
,
F. E.
,
2005
, “
Fracture Closure Stress (FCS) and Lost Returns Practices
,”
SPE/IADC Drilling Conference
,
Amsterdam, The Netherlands
, Feb. 23–25, Paper No. SPE/IADC 92192.
29.
Amanullah
,
M.
, and
Al-Tahini
,
M. A.
,
2009
, “
Nano-Technology—Its Significance in Smart Fluid Development for Oil and Gas Field Application
,”
SPE Saudi Arabia Section Technical Symposium and Exhibition
,
Alkhobar, Saudi Arabia
, May 9–11, Paper No. SPE 126102.
30.
Sensoy
,
T.
,
Chenevert
,
M. E.
, and
Sharma
,
M. M.
,
2009
, “
Minimizing Water Invasion in Shale Using Nanoparticles
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
, Oct. 4–7, Paper No. SPE 124429.
31.
Srivatsa
,
J. T.
, and
Ziaja
,
M. B.
,
2011
, “
An Experimental Investigation on Use of Nanoparticles as Fluid Loss Additives in a Surfactant—Polymer Based Drilling Fluids
,”
International Petroleum Technology Conference
,
Bangkok, Thailand
, Nov. 15–17, Paper No. IPTC 14952.
32.
Javeri
,
S. M.
,
Haindade
,
Z. W.
, and
Jere
,
C. B.
,
2011
, “
Mitigating Loss Circulation and Differential Sticking Problems Using Silicon Nanoparticles
,”
SPE/IADC Middle East Drilling Technology Conference and Exhibition
,
Muscat, Oman
, Oct. 24–26, Paper No. SPE/IADC 145840.
33.
Cai
,
J.
,
Chenevert
,
M. E.
,
Sharma
,
M. M.
, and
Friedheim
,
J.
,
2012
, “
Decreasing Water Invasion Into Atoka Shale Using Nanomodified Silica Nanoparticles
,”
SPE Drill. Completion
,
27
(
1
), pp.
109
112
.
34.
Zakaria
,
M. F.
,
Husein
,
M.
, and
Harland
,
G.
,
2012
, “
Novel Nanoparticle-Base Drilling Fluid With Improved Characteristics
,”
SPE International Oilfield Nanotechnology Conference
,
Noordwijk, The Netherlands
, June 12–14, Paper No. SPE 156992.
35.
Nwaoji
,
C.
,
2012
, “
Wellbore Strengthening-Nano-Particle Drilling Fluid Experimental Design Using Hydraulic Fracture Apparatus
,” M.Sc. thesis, University of Calgary, Calgary, AB, Canada.
36.
Xu
,
Z.
,
Jin
,
Y.
, and
Chen
,
M.
,
2013
, “
Ultrasonic Curable Nanoparticles Strengthening Technique While Drilling
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
, Sept. 30–Oct. 2, Paper No. SPE 166355.
37.
Contreras
,
O.
,
2014
, “
Wellbore Strengthening by Means of Nanoparticle-Based Drilling Fluids
,” Ph.D. dissertation, University of Calgary, Calgary, AB, Canada.
38.
Riley
,
M.
,
Stamatakis
,
E.
,
Young
,
S.
,
Hoelsher
,
K.
,
De Stefano
,
G.
,
Ji
,
L.
,
Guo
,
Q.
, and
Friedheim
,
J.
,
2012
, “
Wellbore Stability in Unconventional Shale—The Design of a Nano-Particle Fluid
,”
SPE Oil and Gas India Conference and Exhibition
,
Mumbai, India
, Mar. 28–30, Paper No. SPE 153729.
39.
Li
,
G.
,
Zhang
,
J.
,
Zhao
,
H.
, and
Hou
,
Y.
,
2012
, “
Nanotechnology to Improve Sealing Ability of Drilling Fluids for Shale With Micro-Cracks During Drilling
,”
SPE International Oilfield Nanotechnology Conference and Exhibition
,
Noordwijk, The Netherlands
, June 12–14, Paper No. SPE 156997.
40.
Hoelscher
,
K. P.
,
De Stefano
,
G.
,
Riley
,
M.
, and
Young
,
S.
,
2012
, “
Application of Nanotechnology in Drilling Fluids
,”
SPE International Oilfield Nanotechnology Conference and Exhibition
,
Noordwijk, The Netherlands
, June 12–14, Paper No. SPE 157031.
41.
Hareland
,
G.
,
Wu
,
A.
,
Ley
,
L.
,
Husein
,
M.
, and
Zakaria
,
M.
,
2012
, “
Innovative Nanoparticle Drilling Fluid and Its Benefits to Horizontal or Extended Reach Drilling
,”
SPE Canadian Unconventional Resources Conference
,
Calgary, AB, Canada
, Oct. 30–Nov. 1, Paper No. SPE 162686.
42.
Abdo
,
J.
, and
Haneef
,
M.
,
2012
, “
Nano-Enhanced Drilling Fluids: Pioneering Approach to Overcome Uncompromising Drilling Problems
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
014501
.
43.
Nguyen
,
P.
,
Do
,
B.
,
Pham
,
D.
,
Nguyen
,
H.
,
Dao
,
D.
, and
Nguyen
,
B.
,
2012
, “
Evaluation on the EOR Potential Capacity of the Synthesized Composite Silica-Core/Polymer-Shell Nanoparticles Blended With Surfactant Systems for the HPHT Offshore Reservoir Conditions
,”
SPE International Oilfield Nanotechnology Conference
,
Noordwijk, The Netherlands
, June 12–14, Paper No. SPE 157127.
44.
Mohebbifar
,
M.
,
Ghazanfari
,
M.
, and
Vossoughi
,
M.
,
2014
, “
Experimental Investigation of Nano-Biomaterial Applications for Heavy Oil Recovery in Shaly Porous Models: A Pore-Level Study
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
014501
.
45.
Ammanullah
,
M.
,
Al-Arfaj
,
M. K.
, and
Al-Abdullatif
,
Z.
,
2011
, “
Preliminary Test Results of Nano-Based Drilling Fluids for Oil and Gas Field Applications
,”
SPE/IADC Drilling Conference and Exhibition
,
Amsterdam, The Netherlands
, Mar. 1–3, Paper No. SPE 139534.
46.
Zakaria
,
M.
,
2013
, “
Nanoparticle-Based Drilling Fluids With Improved Characteristics
,” Ph.D. dissertation, University of Calgary, Calgary, AB, Canada.
You do not currently have access to this content.