A mechanistic model has been developed and validated to quantify a single gas bubble growth with considering multicomponent gas diffusion in solvent(s)–CO2–heavy oil systems under nonequilibrium conditions. Experimentally, constant-composition expansion (CCE) experiments are conducted for C3H8–CO2–heavy oil systems under equilibrium and nonequilibrium conditions, respectively. Theoretically, the classic continuity equation, motion equation, diffusion–convection equation, real gas equation, and Peng–Robinson equation of state (PR EOS) are integrated into an equation matrix to dynamically predict gas bubble growth. Also, the viscous term of motion equation on the gas phase pressure is included due mainly to the viscous nature of heavy oil. The newly proposed model has been validated by using the experimentally measured gas bubble radius as a function of time with good accuracy. Combining with the experimental measurements, the critical nucleus radius and gas bubble growth are quantitatively predicted with the newly proposed model. Effects of mass transfer, supersaturation pressure, mole concentration of each component, liquid cell radius, and pressure decline rate on the gas bubble growth are examined and analyzed. In general, gas bubble growth rate is found to increase with an increase of each of the aforementioned five parameters though the contribution of individual component in a gas mixture to the bubble growth rate is different. A one-step pressure drop and the unlimited liquid volume surrounding a gas bubble are considered to be the necessary conditions to generate the linear relationship between gas bubble radius and the square root of time.

References

1.
Maini
,
B. B.
,
1996
, “
Foamy Oil Flow in Heavy Oil Production
,”
J. Can. Pet. Technol.
,
35
(
6
), pp.
21
24
.
2.
Maini
,
B. B.
,
2001
, “
Foamy-Oil Flow
,”
J. Pet. Technol.
,
53
(
10
), pp.
54
64
.
3.
Sarma
,
H.
, and
Maini
,
B. B.
,
1992
, “
Role of Solution Gas in Primary Production of Heavy Oils
,”
SPE
Latin America Petroleum Engineering Conference
, Caracas, Venezuela, Mar. 8–11, Paper No. SPE 23631.
4.
Sheng
,
J. J.
,
1997
, “
Foamy Oil Flow in Porous Media
,” Ph.D. dissertation, University of Alberta, Edmonton, AB, Canada.
5.
Kamp
,
A. M.
,
Heny
,
C.
,
Andarcia
,
L.
,
Lago
,
M.
, and
Rodriguez
,
A.
,
2001
, “
Experimental Investigation of Foamy Oil Solution Gas Driven
,”
SPE
International Thermal Operations and Heavy Oil Symposium
, Porlamar, Venezuela, Mar. 12–14, Paper No. SPE 69725.
6.
Smith
,
G. E.
,
1988
, “
Fluid Flow and Sand Production in Heavy-Oil Reservoirs Under Solution-Gas Drive
,”
SPE Prod. Eng.
,
3
(
2
), pp.
169
180
.
7.
Maini
,
B. B.
,
Sarma
,
H. K.
, and
George
,
A. E.
,
1993
, “
Significance of Foamy-Oil Behavior in Primary Production of Heavy Oils
,”
J. Can. Pet. Technol.
,
32
(
9
), pp.
50
54
.
8.
Sheng
,
J. J.
,
Hayes
,
R. E.
, and
Maini
,
B. B.
,
1996
, “
A Dynamic Model to Simulate Foamy Oil Flow in Porous Media
,”
SPE
Annual Technical Conference and Exhibition
, Denver, CO, Oct. 8–9, Paper No. SPE 36750.
9.
Mastmann
,
M.
,
Moustakis
,
M. L.
, and
Bennion
,
B.
,
2001
, “
Predicting Foamy Oil Recovery
,”
SPE
Western Regional Meeting
, Bakersfield, CA, Mar. 26–30, Paper No. SPE 68860.
10.
Bennion
,
D. B.
,
Mastmann
,
M.
, and
Moustakis
,
M. L.
,
2003
, “
A Case Study of Foamy Oil Recovery in the Patos-Marinza Reservoir, Driza Sand, Albania
,”
J. Can. Pet. Technol.
,
42
(
3
), pp.
21
28
.
11.
Uddin
,
M.
,
2012
, “
Modelling of Gas Exsolution and Transport in a Live Heavy Oil Reservoir
,”
SPE
Heavy Oil Conference
, Calgary, AB, Canada, June 12–14, Paper No. SPE 158257.
12.
Firoozabadi
,
A.
,
Ottesen
,
B.
, and
Mikkelsen
,
M.
,
1992
, “
Measurements of Supersaturation and Critical Gas Saturation
,”
SPE Form. Eval.
,
7
(
4
), pp.
337
344
.
13.
Kashchiev
,
D.
, and
Firoozabadi
,
A.
,
1993
, “
Kinetics of the Initial Stage of Isothermal Gas Phase Formation
,”
J. Chem. Phys.
,
98
(
6
), pp.
4690
4699
.
14.
Sheng
,
J. J.
,
Maini
,
B. B.
,
Hayes
,
R. E.
, and
Tortike
,
W. S.
,
1999
, “
Critical Review of Foamy Oil Flow
,”
Transp. Porous Media
,
35
(
2
), pp.
157
187
.
15.
Kumar
,
R.
,
1999
, “
Solution-Gas Drive in Heavy Oil-Gas Mobility and Kinetics of Bubble Growth
,”
M.Sc. thesis
, University of Calgary, Calgary, AB, Canada.
16.
Shi
,
Y.
,
Li
,
X.
, and
Yang
,
D.
,
2016
, “
Nonequilibrium Phase Behaviour of Alkane Solvent(s)–CO2–Heavy Oil Systems Under Reservoir Conditions
,”
Ind. Eng. Chem. Res.
,
55
(
10
), pp.
2860
2871
.
17.
Moulu
,
J. C.
,
1989
, “
Solution-Gas Drive: Experiments and Simulation
,”
J. Pet. Sci. Eng.
,
2
(
4
), pp.
379
386
.
18.
Wong
,
R. C. K.
, and
Maini
,
B. B.
,
2007
, “
Gas Bubble Growth in Heavy Oil-Filled Sand Packs Under Undrained Unloading
,”
J. Pet. Sci. Eng.
,
55
(
3–4
), pp.
259
270
.
19.
Jones
,
S. F.
,
Evans
,
G. M.
, and
Galvin
,
K. P.
,
1999
, “
Bubble Nucleation From Gas Cavities—A Review
,”
Adv. Colloid Interface Sci.
,
80
(
1
), pp.
27
50
.
20.
Scriven
,
L. E.
,
1959
, “
On the Dynamics of Phase Growth
,”
Chem. Eng. Sci.
,
10
(
1–2
), pp.
1
13
.
21.
Sheng
,
J. J.
,
Hayes
,
R. E.
,
Maini
,
B. B.
, and
Tortike
,
W. S.
,
1995
, “
A Proposed Dynamic Model for Foamy Oil Properties
,”
SPE
International Heavy Oil Symposium
, Calgary, AB, Canada, June 19–21, Paper No. SPE 30253.
22.
Szekely
,
J.
, and
Martins
,
G. P.
,
1971
, “
Non-Equilibrium Effects in the Growth of Spherical Gas Bubbles Due to Solution Diffusion
,”
Chem. Eng. Sci.
,
26
(
1
), pp.
147
159
.
23.
Rosner
,
D. E.
, and
Epstein
,
M.
,
1972
, “
Effects of Interface Kinetics, Capillarity and Solute Diffusion on Bubble Growth Rates in Highly Supersaturated Liquids
,”
Chem. Eng. Sci.
,
27
(
12
), pp.
69
88
.
24.
Arefmanesh
,
A.
,
Advani
,
S. G.
, and
Michaelides
,
E. E.
,
1992
, “
An Accurate Numerical Solution for Mass Diffusion-Induced Bubble Growth in Viscous Liquids Containing Limited Dissolved Gas
,”
Int. J. Heat Mass Transfer
,
35
(
7
), pp.
1711
1722
.
25.
Naderi
,
K.
, and
Babadagli
,
T.
,
2016
, “
Solvent Selection Criteria and Optimal Application Conditions for Heavy-Oil/Bitumen Recovery at Elevated Temperatures: A Review and Comparative Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012904
.
26.
Shi
,
J.
, and
Leung
,
J. Y.
,
2014
, “
Semi-Analytical Proxy for Vapex Process Modeling in Heterogeneous Reservoirs
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
032904
.
27.
Li
,
H.
, and
Yang
,
D.
,
2016
, “
Determination of Individual Diffusion Coefficients of Solvent–CO2 Mixture in Heavy Oil Using Pressure-Decay Method
,”
SPE J.
,
21
(
1
), pp.
131
143
.
28.
Zheng
,
S.
,
Li
,
H.
,
Sun
,
H.
, and
Yang
,
D.
,
2016
, “
Determination of Diffusion Coefficient for Solvent-CO2 Mixtures in Heavy Oil With Consideration of Swelling Effect
,”
Ind. Eng. Chem. Res.
,
55
(
6
), pp.
1533
1549
.
29.
Sun
,
H.
,
Li
,
H.
, and
Yang
,
D.
,
2014
, “
Coupling Heat and Mass Transfer for a Gas Mixture–Heavy Oil System at High Pressures and Elevated Temperatures
,”
Int. J. Heat Mass Transfer
,
74
(
7
), pp.
173
184
.
30.
Zheng
,
S.
,
Sun
,
H.
, and
Yang
,
D.
,
2016
, “
Coupling Heat and Mass Transfer for Determining Individual Diffusion Coefficient of a Hot C3H8-CO2 Mixture in Heavy Oil Under Reservoir Conditions
,”
Int. J. Heat Mass Transfer
,
102
, pp.
251
263
.
31.
Zheng
,
S.
, and
Yang
,
D.
,
2016
, “
Determination of Diffusion Coefficients of C3H8/n-C4H10/CO2/Heavy-Oil Systems at High Pressures and Elevated Temperatures by Dynamic Volume Analysis
,”
SPE J.
(preprint).
32.
Zheng
,
S.
, and
Yang
,
D.
,
2017
, “
Experimental and Theoretical Determination of Diffusion Coefficients of CO2-Heavy Oil Systems by Coupling Heat and Mass Transfer
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022901
.
33.
Cable
,
M.
, and
Frade
,
J. R.
,
1987
, “
Diffusion-Controlled Growth of Multi-Component Gas Bubbles
,”
J. Mater. Sci.
,
22
(
3
), pp.
919
924
.
34.
Gor
,
G. Y.
, and
Kuchma
,
A. E.
,
2009
, “
Steady-State Composition of Two-Component Gas Bubble Growing in a Liquid Solution: Self-Similar Approach
,”
J. Chem. Phys.
,
131
(
23
), p.
234705
.
35.
Amon
,
M.
, and
Denson
,
C. D.
,
1984
, “
A Study of the Dynamics of Foam Growth Analysis of the Growth of Closely Spaced Spherical Bubbles
,”
Polym. Eng. Sci.
,
24
(
13
), pp.
1026
1034
.
36.
Leung
,
S. N.
,
Park
,
C. B.
,
Xu
,
D.
,
Li
,
H.
, and
Fenton
,
R. G.
,
2006
, “
Computer Simulation of Bubble-Growth Phenomena in Foaming
,”
Ind. Eng. Chem. Res.
,
45
(
23
), pp.
7823
7831
.
37.
Payvar
,
P.
,
1987
, “
Mass Transfer-Controlled Bubble Growth During Rapid Decompression of a Liquid
,”
Int. J. Heat Mass Transfer
,
30
(
4
), pp.
699
706
.
38.
Li
,
H.
,
Yang
,
D.
, and
Tontiwachwuthikul
,
P.
,
2012
, “
Experimental and Theoretical Determination of Equilibrium Interfacial Tension for the Solvent(s)−CO2−Heavy Oil Systems
,”
Energy Fuels
,
26
(
3
), pp.
1776
1786
.
39.
Yarranton
,
H. W.
,
van Dorp
,
J. J.
,
Verlaan
,
M. L.
, and
Lastovka
,
V.
,
2013
, “
Wanted Dead or Live: Crude-Cocktail Viscosity—A Pseudocomponent Method to Predict the Viscosity of Dead Oils, Live Oils, and Mixtures
,”
J. Can. Pet. Technol.
,
52
(
3
), pp.
176
191
.
40.
Pedersen
,
K. S.
,
Christensen
,
P. L.
, and
Shaikh
,
J. A.
,
2014
,
Phase Behavior of Petroleum Reservoir Fluids
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
41.
Tharanivasan
,
A. K.
,
Yang
,
C.
, and
Gu
,
Y.
,
2006
, “
Measurements of Molecular Diffusion Coefficients of Carbon Dioxide, Methane, and Propane in Heavy Oil Under Reservoir Conditions
,”
Energy Fuels
,
20
(
6
), pp.
2509
2517
.
42.
Peng
,
D.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.
43.
Li
,
H.
, and
Yang
,
D.
,
2011
, “
Modified α Function for the Peng-Robinson Equation of State to Improve the Vapor Pressure Prediction of Non-Hydrocarbon and Hydrocarbon Compounds
,”
Energy Fuels
,
25
(
1
), pp.
215
223
.
44.
Li
,
H.
,
Yang
,
D.
, and
Li
,
X.
,
2013
, “
Determination of Three-Phase Boundaries of Solvent(s)-CO2-Heavy Oil Systems Under Reservoir Condition
,”
Energy Fuels
,
27
(
1
), pp.
145
153
.
45.
Li
,
H.
, and
Yang
,
D.
,
2013
, “
Phase Behaviour of C3H8/n-C4H10/Heavy-Oil Systems at High Pressures and Elevated Temperatures
,”
J. Can. Pet. Technol.
,
52
(
1
), pp.
30
40
.
46.
Li
,
H.
,
Zheng
,
S.
, and
Yang
,
D.
,
2013
, “
Enhanced Swelling Effect and Viscosity Reduction of Solvent(s)/CO2/Heavy-Oil Systems
,”
SPE J.
,
18
(
4
), pp.
695
707
.
47.
Li
,
H.
,
Sun
,
H.
, and
Yang
,
D.
,
2016
, “
Effective Diffusion Coefficients of Gas Mixture in Heavy Oil Under Constant-Pressure Conditions
,”
Heat Mass Transfer
(preprint).
48.
Li
,
X.
,
Li
,
H.
, and
Yang
,
D.
,
2013
, “
Determination of Multiphase Boundaries and Swelling Factors of Solvent(s)–CO2–Heavy Oil Systems at High Pressures and Elevated Temperatures
,”
Energy Fuels
,
27
(
3
), pp.
1293
1306
.
49.
Li
,
X.
,
Yang
,
D.
,
Zhang
,
X.
,
Zhang
,
G.
, and
Gao
,
J.
,
2016
, “
Binary Interaction Parameters of CO2-Heavy-n-Alkanes Systems by Using Peng-Robinson Equation of State With Modified Alpha Function
,”
Fluid Phase Equilib.
,
417
, pp.
77
86
.
50.
Chueh
,
P. L.
, and
Prausnitz
,
J. M.
,
1967
, “
Vapor-Liquid Equilibria at High Pressures: Calculation of Partial Molar Volumes in Non Polar Liquid Mixtures
,”
AIChE J.
,
13
(
6
), pp.
1099
1107
.
51.
Yortsos
,
Y. C.
, and
Parlar
,
M.
,
1989
, “
Phase Change in Binary Systems in Porous Media: Application to Solution-Gas Drive
,”
SPE
Annual Technical Conference and Exhibition
, San Antonio, TX, Oct. 8–11, Paper No. SPE 19697.
52.
Claridge
,
E. L.
, and
Prats
,
M.
,
1995
, “
A Proposed Model and Mechanism for Anomalous Foamy Heavy Oil Behavior
,”
SPE
International Heavy Oil Symposium
, Calgary, AB, Canada, June 19–21, Paper No. SPE 29243.
53.
Ward
,
C. A.
, and
Levart
,
E.
,
1984
, “
Conditions for Stability of Bubble Nuclei in Solid Surfaces Contacting a Liquid–Gas Solution
,”
J. Appl. Phys.
,
56
(
2
), pp.
491
500
.
54.
Kamath
,
J.
, and
Boyer
,
R. E.
,
1995
, “
Critical Gas Saturation and Supersaturation in Low-Permeability Rocks
,”
SPE Form. Eval.
,
10
(
4
), pp.
247
253
.
55.
Kennedy
,
H. T.
, and
Olson
,
C. R.
,
1952
, “
Bubble Formation in Supersaturated Hydrocarbon Mixtures
,”
J. Pet. Technol.
,
4
(
11
), pp.
271
278
.
56.
Firoozabadi
,
A.
, and
Kashchiev
,
D.
,
1996
, “
Pressure and Volume Evolution During Gas Phase Formation in Solution Gas Drive Process
,”
SPE J.
,
1
(
3
), pp.
1
9
.
57.
Geilikman
,
M. B.
,
Dusseault
,
M. B.
, and
Dullien
,
F. A. L.
,
1995
, “
Dynamic Effects of Foamy Fluid Flow in Sand Production Instability
,”
SPE
International Heavy Oil Symposium
, Calgary, AB, Canada, June 19–21, Paper No. SPE 30251.
You do not currently have access to this content.