Scaling criteria have been developed and validated to evaluate performance of waterflooding and immiscible CO2 flooding in heavy oil reservoirs by using a three-dimensional (3D) sandpacked displacement model. Experimentally, the 3D physical model consisting of a pair of horizontal wells together with five vertical wells is used to conduct waterflooding and immiscible CO2 flooding processes, respectively. Theoretically, mathematical formulae have been developed for waterflooding and immiscible CO2 flooding by performing dimensional and inspectional analyses. The scaling group of the gravitational force to viscous force is found to be negligible when scaling up a model to its prototype. The relaxed scaling criteria are validated by comparing the simulation results of a synthetic reservoir with experimental measurements and then extended for a field application. There also exists a reasonably good agreement between the laboratory measurements and the field application with the determined scaling criteria.

References

1.
Canada National Energy Board
,
2005
, “
Short-Term Outlook for Canadian Crude Oil
,”
National Energy Board
,
Calgary, AB, Canada
.
2.
Das
,
S. K.
,
1998
, “
VAPEX: An Efficient Process for the Recovery of Heavy Oil and Bitumen
,”
SPE J.
,
3
(
3
), pp.
232
237
.
3.
James
,
L. A.
,
Rezaei
,
N.
, and
Chatzis
,
I.
,
2008
, “
VAPEX, Warm VAPEX and Hybrid VAPEX—The State of Enhanced Oil Recovery for In Situ Heavy Oils in Canada
,”
J. Can. Pet. Technol.
,
47
(
4
), pp.
1
7
.
4.
Zheng
,
S.
, and
Yang
,
D.
,
2016
, “
Determination of Individual Diffusion Coefficients of C3H8-n-C4H10-CO2-Heavy Oil Systems at High Pressures and Elevated Temperatures by Dynamic Volume Analysis
,”
SPE J.
(preprint).
5.
Naderi
,
K.
, and
Babadagli
,
T.
,
2016
, “
Solvent Selection Criteria and Optimal Application Conditions for Heavy-Oil/Bitumen Recovery at Elevated Temperatures: A Review and Comparative Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012904
.
6.
Li
,
H.
,
Zheng
,
S.
, and
Yang
,
D.
,
2013
, “
Enhanced Swelling Effect and Viscosity Reduction of Solvent(s)/CO2/Heavy-Oil Systems
,”
SPE J.
,
18
(
4
), pp.
695
707
.
7.
Beeson
,
D. M.
, and
Ortloff
,
G. D.
,
1959
, “
Laboratory Investigation of the Water-Driven Carbon Dioxide Process for Oil Recovery
,”
J. Pet. Technol.
,
11
(
4
), pp.
63
66
.
8.
Spivak
,
A.
,
Garrison
,
W. H.
, and
Nguyen
,
J. P.
,
1990
, “
Review of an Immiscible CO2 Project, Tar Zone, Fault Block V, Wilmington Field, California
,”
SPE Reservoir Eng.
,
5
(
2
), pp.
155
162
.
9.
Mathiassen
,
O. M.
,
2003
, “
CO2 as Injection Gas for Enhanced Oil Recovery and Estimation of the Potential on the Norwegian Continental Shelf: Part 1
,”
Norwegian University of Science and Technology,
Trondheim, Norway.
10.
Sahin
,
S.
,
Kalfa
,
U.
, and
Celebioglu
,
D.
,
2008
, “
Bati Raman Field Immiscible CO2 Application–Status Quo and Future Plans
,”
SPE Reservoir Eval. Eng.
,
11
(
4
), pp.
778
791
.
11.
Rojas
,
G. A.
,
1985
, “
Scaled Model Studies of Immiscible Carbon Dioxide Displacement of Heavy Oil
,” Ph.D. dissertation, University of Alberta, Edmonton, AB, Canada.
12.
Zheng
,
S.
, and
Yang
,
D.
,
2013
, “
Pressure Maintenance and Improving Oil Recovery by Means of Immiscible Water-Alternating-CO2 Processes in Thin Heavy-Oil Reservoirs
,”
SPE Reservoir Eval. Eng.
,
16
(
1
), pp.
60
71
.
13.
Saner
,
W. B.
, and
Patton
,
J. T.
,
1986
, “
CO2 Recovery of Heavy Oil: Wilmington Field Test
,”
J. Pet. Technol.
,
38
(
7
), pp.
769
776
.
14.
Ammer
,
J. R.
,
Enick
,
R. M.
, and
Klara
,
S. M.
,
1991
, “
Modeling the Performance of Horizontal Injection Wells in Carbon Dioxide Miscible Displacement Processes
,”
11th SPE Symposium on Reservoir Simulation
, Anaheim, CA, Feb. 17–20, Paper No.
SPE
21220.
15.
Farahi
,
M. M. M.
,
Rasaei
,
M. R.
,
Rostami
,
B.
, and
Alizadeh
,
M.
,
2014
, “
Scaling Analysis and Modeling of Immiscible Forced Gravity Drainage Process
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022901
.
16.
Geertsma
,
J.
,
Croes
,
G. A.
, and
Schwarz
,
N.
,
1956
, “
Theory of Dimensionally Scaled Models of Petroleum Reservoirs
,”
Pet. Trans. AIME
,
207
(
19
), pp.
118
127
.
17.
Loomis
,
A. G.
, and
Crowell
,
D. C.
,
1964
, “
Theory and Application of Dimensional and Inspectional Analysis to Model Study of Fluid Displacements in Petroleum Reservoirs
,” Bureau of Mines, Washington, DC.
18.
Leverett
,
M. C.
,
Lewis
,
W. B.
, and
True
,
M. E.
,
1942
, “
Dimensional-Model Studies of Oil-Field Behavior
,”
Trans. AIME
,
146
(
1
), pp.
175
193
.
19.
Rapoport
,
L. A.
,
1954
, “
Scaling Laws for Use in Design and Operation of Water-Oil Flow Models
,”
SPE Petroleum Branch Fall Meeting
, San Antonio, TX, Oct. 17–20, Paper No. SPE 415-G.
20.
Van Daalen
,
F.
, and
van Domselaar
,
H. R.
,
1972
, “
Scaled Fluid-Flow Models With Geometry Differing From That of Prototype
,”
SPE J.
,
12
(
3
), pp.
220
228
.
21.
Li
,
D.
, and
Lake
,
L. W.
,
1995
, “
Scaling Fluid Flow Through Heterogeneous Permeable Media
,”
SPE J.
,
1
(
3
), pp.
188
197
.
22.
Engelberts
,
W. F.
, and
Klikenberg
,
L. J.
,
1951
, “
Laboratory Experiments on the Displacement of Oil by Water From Packs of Granular Material
,”
3rd World Petroleum Congress
, Hague, The Netherlands, May 28–June 6, Paper No. 4138.
23.
Langhaar
,
H. L.
,
1951
,
Dimensional Analysis and Theory of Models
,
Wiley
,
New York
.
24.
Craig
,
F. F.
, Jr.
,
Sanderlin
,
J. L.
, and
Moore
,
D. W.
,
1957
, “
A Laboratory Study of Gravity Segregation in Frontal Drives
,”
SPE Petroleum Branch Fall Meeting in Los Angeles
, CA, Oct. 14–17, Paper No.
SPE
676-G.
25.
Buckingham
,
E.
,
1914
, “
On Physically Similar Systems: Illustrations of the Use of Dimensional Equations
,”
Phys. Rev.
,
4
(
2
), pp.
345
376
.
26.
Zhou
,
D.
,
2015
, “
Development of Scaling Criteria for Waterflooding and Immiscible CO2 Flooding in Unconventional Reservoirs
,”
M.Sc. thesis
, University of Regina, Regina, SK, Canada.
27.
Bentsen
,
R. G.
,
1976
, “
Scaled Fluid-Flow Models With Permeabilities Differing From That of the Prototype
,”
J. Can. Pet. Technol.
,
15
(
3
), pp.
46
52
.
28.
Rojas
,
G. A.
, and
Ali
,
S. M. F.
,
1986
, “
Scaled Model Studies of Carbon Dioxide/Brine Injection Strategies for Heavy Oil Recovery From Thin Formations
,”
J. Can. Pet. Technol.
,
25
(
1
), pp.
85
94
.
29.
Perkins
,
F. M.
, and
Collins
,
R. E.
,
1960
, “
Scaling Laws for Laboratory Flow Models of Oil Reservoirs
,”
J. Pet. Technol.
,
12
(
8
), pp.
69
71
.
30.
Perkins
,
T. K.
, and
Johnston
,
O. C.
,
1963
, “
A Review of Diffusion and Dispersion in Porous Media
,”
SPE J.
,
3
(
1
), pp.
70
84
.
31.
Doscher
,
T. M.
, and
Gharib
,
S.
,
1983
, “
Physically Scaled Model Studies Simulating the Displacement of Residual Oil by Miscible Fluids
,”
SPE J.
,
23
(
3
), pp.
440
446
.
32.
Yang
,
G.
, and
Butler
,
R. M.
,
1992
, “
Effects of Reservoir Heterogeneities on Heavy Oil Recovery by Steam-Assisted Gravity Drainage
,”
J. Can. Pet. Technol.
,
31
(
8
), pp.
37
44
.
33.
Tang
,
G.
,
Sahni
,
A.
,
Gadelle
,
F.
,
Kumar
,
M.
, and
Kovscek
,
A. R.
,
2006
, “
Heavy-Oil Solution Gas Drive in Consolidated and Unconsolidated Rock
,”
SPE J.
,
11
(
2
), pp.
259
268
.
34.
Pozzi
,
A. L.
, and
Blackwell
,
R. J.
,
1963
, “
Design of Laboratory Models for Study of Miscible Displacement
,”
SPE J.
,
3
(
1
), pp.
28
40
.
35.
Grogan
,
A. T.
,
Pinczewski
,
V. W.
,
Ruskauff
,
G. J.
, and
Orr
,
F. M.
, Jr.
,
1988
, “
Diffusion of CO2 at Reservoir Conditions: Models and Measurements
,”
SPE Reservoir Eng.
,
3
(
1
), pp.
93
102
.
36.
Yang
,
D.
, and
Gu
,
Y.
,
2008
, “
Determination of Diffusion Coefficients and Interface Mass-Transfer Coefficients of the Crude Oil-CO2 Systems by Analysis of the Dynamic and Equilibrium Interfacial Tensions
,”
Ind. Eng. Chem. Res.
,
47
(
15
), pp.
5447
5455
.
37.
Zheng
,
S.
, and
Yang
,
D.
,
2017
, “
Experimental and Theoretical Determination of Diffusion Coefficients of CO2-Heavy Oil Systems by Coupling Heat and Mass Transfer
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022901
.
38.
Adams
,
D. M.
,
1982
, “
Experiences With Waterflooding Lloydminster Heavy-Oil Reservoirs
,”
J. Pet. Technol.
,
34
(
8
), pp.
1643
1650
.
39.
Chang
,
Y.
,
Coats
,
B. K.
, and
Nolen
,
J. S.
,
1998
, “
A Compositional Model for CO2 Floods Including CO2 Solubility in Water
,”
SPE Reservoir Eval. Eng.
,
1
(
2
), pp.
155
160
.
40.
Yang
,
D.
,
Tontiwachwuthikul
,
P.
, and
Gu
,
Y.
,
2005
, “
Interfacial Interactions Between Reservoir Brine and CO2 at High Pressures and Elevated Temperatures
,”
Energy Fuels
,
19
(
1
), pp.
216
223
.
41.
Yang
,
D.
,
Tontiwachwuthikul
,
P.
, and
Gu
,
Y.
,
2005
, “
Interfacial Tensions of the Crude Oil + Reservoir Brine + CO2 Systems at Pressures up to 31 MPa and Temperatures of 27 °C and 58 °C
,”
J. Chem. Eng. Data
,
50
(
4
), pp.
1242
1249
.
42.
Zhang
,
Y.
,
Yang
,
D.
, and
Song
,
C.
,
2016
, “
A Damped Iterative EnKF Method to Estimate Relative Permeability and Capillary Pressure for Tight Formations From Displacement Experiments
,”
Fuel
,
167
(
5
), pp.
306
315
.
43.
IHS, Inc.
,
2014
, “
AccuMap Oil and Gas Exploration and Evaluation Mapping Software
,” IHS (Canada), Englewood, CO.
You do not currently have access to this content.