The increasing penetration of variable and unpredictable renewable energy sources into the liberalized electricity market brings about significant changes in the management strategies of fossil fuel power plants. These new operation modes cause remarkable effects on the lifetime of the plants. Consequently, the operators of the plants need to be assisted by effective procedures, which are able to define suitable production plans. In the present paper, the authors propose a dynamic model which can be used to estimate the effects of the variations of thermodynamic and mechanical parameters during transient operation, start-ups and shut-downs. To check the effectiveness of the model, a combined cycle plant with a three-pressure level heat recovery steam generator has been selected. The geometry of the components, the influence of the environmental conditions, and the control strategies are included in the model. In this way, the residual lifetime of the most critical components can be predicted.

References

1.
EU
,
2009
, “
Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009
,”
European Parliament and Council of the European Union
, Brussels, Belgium.http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32009L0028
2.
Department of Energy and International Energy Agency
,
2011
, “
International Energy Outlook
,” U.S. Energy Information Administration, Washington, DC, accessed June 7, 2015, www.eia.gov
3.
Bortolini
,
M.
,
Gamberi
,
M.
, and
Graziani
,
A.
,
2013
, “
Multi-Parameter Analysis for the Technical and Economic Assessment of Photovoltaic Systems in the Main European Union Countries
,”
Energy Convers. Manage.
,
74
, pp.
117
–128.
4.
Stoppato
,
A.
,
Benato
,
A.
, and
Mirandola
,
A.
,
2012
, “
Assessment of Stresses and Residual Life of Plant Components in View of Life-Time Extension of Power Plants
,”
ECOS 2012
—The 25th International Conference on Efficiency, Cost, Optimization and Simulation of Energy Conversion Systems and Processes
, Vol.
4
, Perugia, Italy, June 26–29, pp.
104
113
.https://www.researchgate.net/publication/263268611_Assessment_of_stresses_and_residual_life_of_plant_components_in_view_of_life-time_extension_of_power_plants
5.
Pierre
,
G. R. S.
,
1997
, “
Advanced Materials and Coatings for Energy Conversion Systems
,”
Energy Convers. Manage.
,
38
(
10
), pp.
1035
1041
.
6.
Yoshida
,
Y.
,
Yamanaka
,
K.
,
Yamashita
,
A.
,
Iyanaga
,
N.
, and
Yoshida
,
T.
,
2016
, “
Coordinated Control of Gas and Steam Turbines for Efficient Fast Start-Up of Combined Cycle Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022601
.
7.
EU
,
2010
, “
Directive 2010/75/EU: Industrial Emissions (Integrated Pollution Prevention and Control)
,”
European Parliament and Council of the European Union
, Brussels, Belgium.http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:334:0017:0119:en:PDF
8.
Ruth
,
L. A.
,
2001
, “
Advanced Coal-Fired Power Plants
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
4
9
.
9.
Henkel
,
N.
,
Schmid
,
E.
, and
Gobrecht
,
E.
,
2008
, “
Operational Flexibility Enhancements of Combined Cycle Power Plants
,”
PowerGen Asia
, Kuala Lumpur, Malaysia, Oct. 21–23.http://www.energy.siemens.com/hq/pool/hq/energy-topics/pdfs/en/combined-cycle-power-plants/OperationalFlexibilityEnhancementsofCombinedCyclePowerPlants.pdf
10.
Calzolari
,
F.
,
Gatti
,
R.
,
Traverso
,
P.
, and
Traverso
,
R.
,
2013
, “
Ansaldo energia: la flessibilità operativa dei cicli combinati coniugata all'efficienza energetica
,”
Ansaldo Energia
, Milan, Italy, July 11.http://animp.it/animp/images/PDF_archivio/ANSALDO%20ENERGIA_Calzolari_Memoria.pdf
11.
Calzolari
,
F.
,
Pesenti
,
A.
,
Piana
,
C.
, and
Rosatelli
,
F.
,
2014
, “
Miglioramenti nella flessibilità dei cicli combinati: esperienze recenti di ansaldo energia
,”
Ansaldo Energia
, Milan, Italy, Apr. 8.http://www.ati2000.it/media/docs/101-ANSALDO_Presentazione.pdf
12.
Elshafei
,
M.
,
Habib
,
M. A.
,
Al-Zaharnah
,
I.
, and
Nemitallah
,
M. A.
,
2014
, “
Boilers Optimal Control for Maximum Load Change Rate
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031301
.
13.
Habib
,
M.
,
Alzaharnah
,
I.
,
El-Shafei
,
M.
,
Al-Anizi
,
S.
,
Al-Awwad
,
M.
, and
Hajji
,
M.
,
2013
, “
Influence of Boiler Load Swing Rates on Response of Drum Water Level
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
022904
.
14.
Kumar
,
N.
,
2014
, “
Improving the Flexibility of Coal-Fired Power Plants
,” PennWell Publishing, Tulsa, OK, accessed Nov. 2, 2015, http://www.power-eng.com/articles/print/volume-118/issue-9/features/improving-the-flexibility-of-coal-fired-power-plants.html
15.
Kim
,
T. S.
,
2004
, “
Comparative Analysis on the Part Load Performance of Combined Cycle Plants Considering Design Performance and Power Control Strategy
,”
Energy
,
29
(
1
), pp.
71
85
.
16.
Benato
,
A.
,
Stoppato
,
A.
, and
Bracco
,
S.
,
2014
, “
Combined Cycle Power Plants: A Comparison Between Two Different Dynamic Models to Evaluate Transient Behaviour and Residual Life
,”
Energy Convers. Manage.
,
87
, pp.
1269
1280
.
17.
Benato
,
A.
,
Bracco
,
S.
,
Stoppato
,
A.
, and
Mirandola
,
A.
,
2016
, “
Dynamic Simulation of Combined Cycle Power Plant Cycling in the Electricity Market
,”
Energy Convers. Manage.
,
107
, pp.
76
85
.
18.
Benato
,
A.
,
Stoppato
,
A.
, and
Mirandola
,
A.
,
2015
, “
Dynamic Behaviour Analysis of a Three Pressure Level Heat Recovery Steam Generator During Transient Operation
,”
Energy
,
90
(Part 2), pp.
1595
1605
.
19.
Lu
,
S.
,
1999
, “
Dynamic Modelling and Simulation of Power Plant Systems
,”
Proc. Inst. Mech. Eng., Part A
,
213
(
1
), pp.
7
19
.
20.
Akiyama
,
T.
,
Matsumoto
,
H.
, and
Asakura
,
K.
,
1997
, “
Dynamic Simulation and Its Applications to Optimum Operation Support for Advanced Combined Cycle Plants
,”
Energy Convers. Manage.
,
38
(
15–17
), pp.
1709
1723
.
21.
Shirakawa
,
M.
,
Nakamoto
,
M.
, and
Hosaka
,
S.
,
2005
, “
Dynamic Simulation and Optimization of Start-Up Processes in Combined Cycle Power Plants
,”
JSME Int. J., Ser. B
,
48
(
1
), pp.
122
128
.
22.
Casella
,
F.
, and
Pretolani
,
F.
,
2006
, “
Fast Start-Up of a Combined Cycle Power Plant: A Simulation Study With Modelica
,”
Modelica 2006
, Vienna, Austria, Sept. 4–5, The Modelica Association, pp.
3
10
.https://www.modelica.org/events/modelica2006/Proceedings/sessions/Session1a1.pdf
23.
Fritzson
,
P.
, and
Engelson
,
V.
,
1998
, “
Modelica—A Unified Object-Oriented Language for System Modeling and Simulation
,”
ECOOP 98
—Object-Oriented Programming
, 12th European Conference, Brussels, Belgium, July 20–24, pp.
67
90
.
24.
Heimo
,
W.
,
2007
, “
Dynamic Simulation of Natural Circulation Steam Generators With the Use of Finite-Volume-Algorithms: A Comparison of Four Algorithms
,”
Simul. Modell. Pract. Theory
,
15
(
5
), pp.
565
588
.
25.
Alobaid
,
F.
,
Postler
,
R.
,
Strohle
,
J.
,
Epple
,
B.
, and
Kim
,
H. G.
,
2008
, “
Modeling and Investigation Start-Up Procedures of a Combined Cycle Power Plant
,”
Appl. Energy
,
85
(
12
), pp.
1173
1189
.
26.
Alobaid
,
F.
,
Strohle
,
J.
,
Epple
,
B.
, and
Kim
,
H.
,
2009
, “
Dynamic Simulation of a Supercritical Once-Through Heat Recovery Steam Generator During Load Changes and Start-Up Procedures
,”
Appl. Energy
,
86
(
7–8
), pp.
1274
1282
.
27.
Apros
,
2014
, “
Apros: Advanced Process Simulation Software
,” Fortum Corporation, Espoo, Finland, accessed June 7, 2015, www.apros.fi/en/
28.
Aspentech
,
2014
, “
Aspen Plus Dynamics: Advanced Processing Simulation Software
,” Aspentech, Burlington, MA, accessed June 7, 2015, www.aspentech.com/products/aspen-dynamics.aspx
29.
Bhambare
,
K.
,
Mitra
,
S. K.
, and
Gaitonde
,
U.
,
2007
, “
Modeling of a Coal-Fired Natural Circulation Boiler
,”
ASME J. Energy Resour. Technol.
,
129
(
2
), pp.
159
167
.
30.
Dumitrescu
,
A.
,
Lee
,
T.
, and
Roy
,
R.
,
2011
, “
Computational Model of a Hybrid Pressurized Solid Oxide Fuel Cell Generator/Gas Turbine Power Plant
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
012602
.
31.
Ryu
,
C.
,
Tiffany
,
D. R.
,
Crittenden
,
J. F.
,
Lear
,
W. E.
, and
Sherif
,
S.
,
2010
, “
Dynamic Modeling of a Novel Cooling, Heat, Power, and Water Microturbine Combined Cycle
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021006
.
32.
Tica
,
A.
,
Gueguen
,
H.
,
Dumur
,
D.
,
Faille
,
D.
, and
Davelaar
,
F.
,
2012
, “
Design of a Combined Cycle Power Plant Model for Optimization
,”
Appl. Energy
,
98
, pp.
256
265
.
33.
Horkeby
,
K.
,
2012
, “
Simulation of Heat Recovery Steam Generator in a Combined Cycle Power Plant
,”
Master's thesis
, Linköpings Universitet, Linköping, Sweden.http://www.diva-portal.org/smash/get/diva2:509097/FULLTEXT01.pdf
34.
Psyllaki
,
P.
,
Pantazopoulos
,
G.
, and
Lefakis
,
H.
,
2009
, “
Metallurgical Evaluation of Creep-Failed Superheater Tubes
,”
Eng. Failure Anal.
,
16
(
5
), pp.
1420
1431
.
35.
Jones
,
D.
,
2004
, “
Creep Failures of Overheated Boiler, Superheater and Reformer Tubes
,”
Eng. Failure Anal.
,
11
(
6
), pp.
873
893
.
36.
Othman
,
H.
,
Purbolaksono
,
J.
, and
Ahmad
,
B.
,
2009
, “
Failure Investigation on Deformed Superheater Tubes
,”
Eng. Failure Anal.
,
16
(
1
), pp.
329
339
.
37.
Purbolaksono
,
J.
,
Ahmad
,
J.
,
Beng
,
L.
,
Rashid
,
A.
,
Khinani
,
A.
, and
Ali
,
A.
,
2010
, “
Failure Analysis on a Primary Superheater Tube of a Power Plant
,”
Eng. Failure Anal.
,
17
(
1
), pp.
158
167
.
38.
Roy
,
J. P.
,
Mishra
,
M. K.
, and
Misra
,
A.
,
2010
, “
Parametric Optimization and Performance Analysis of a Waste Heat Recovery System Using Organic Rankine Cycle
,”
Energy
,
35
(
12
), pp.
5049
5062
.
39.
ASME
,
2001
, “
ASME Code: Boiler and Pressure Vessel Code—Sections II and III
,” American Society of Mechanical Engineers, New York.
40.
British Energy
,
2003
,
R5 Assessment Procedure for the High Temperature Response of Structures
, Issue 3,
British Energy
,
Gloucester, UK
.
41.
UNI
,
2011
, “
Water-Tube Boilers Standards
,” Ente Nazionale di Normazione, Milano, Italy, Standard No. UNI EN 12952-5:2011.
42.
TRD
,
2001
, “
TRD 301, Annex 1: Calculation for Cyclic Loading due to Pulsating Internal Pressure or Combined Changes of Internal Pressure and Temperature
.”
43.
Bracco
,
S.
,
Crosa
,
G.
, and
Trucco
,
A.
,
2007
, “
Dynamic Simulator of a Combined Cycle Power Plant: Focus on the Heat Recovery Steam Generator
,”
ECOS 2007
, Vol.
I
, Padova, Italy, June 25–28, pp.
189
196
.
44.
Heusser
,
P.
,
Pocajt
,
V.
, and
Baumann
,
N.
,
2015
, “
Key to Metals Database
,” Key to Metals AG, Zürich, Switzerland, accessed June 7, 2015,
keytometals.com
http://keytometals.com/page.aspx?ID=HomeKTM&LN=EN
45.
Benato
,
A.
,
Stoppato
,
A.
,
Mirandola
,
A.
, and
Destro
,
N.
,
2015
, “
Dynamic Simulation of a Three Pressure Level Heat Recovery Steam Generator
,”
ECOS 2015
—The 28th International Conference on Efficiency, Cost, Optimization, Simulations and Environmental Impact of Energy Systems
, Pau, France, June 29–July 3.https://www.researchgate.net/publication/279871688_Dynamic_Simulation_of_a_Three_Pressure_Level_Heat_Recovery_Steam_Generator
46.
Benato
,
A.
,
Bracco
,
S.
,
Stoppato
,
A.
, and
Mirandola
,
A.
,
2016
, “
LTE: A Procedure to Predict Power Plants Dynamic Behaviour and Components Lifetime Reduction During Transient Operation
,”
Appl. Energy
,
162
, pp.
880
891
.
47.
Elmqvist
,
H.
,
Bruck
,
D.
, and
Otter
,
M.
,
1996
, “
Dymola—User's Manual
,”
Dynasim AB
, Lund,
Sweden
.https://www.inf.ethz.ch/personal/cellier/Lect/MMPS/Refs/Dymola5Manual.pdf
48.
Casella
,
F.
, and
Leva
,
A.
,
2014
, “
Thermopower Library: Open Library for Thermal Power Plant Simulation
,” Politecnico di Milano, Milano, Italy, accessed June 7, 2015, thermopower.sourceforge.net/
49.
Kurzke
,
J.
,
2004
, “
Component Map Collection 2, Compressor and Turbine Maps for Gas Turbine Performance Computer Programs
,” Gasturb, Aachen, Germany, accessed June 7, 2015, www.gasturb.de
50.
Kurzke
,
J.
,
2005
, “
How to Create a Performance Model of a Gas Turbine From a Limited Amount of Information
,”
ASME
Paper No. GT2005-68536.
51.
Stodola
,
A.
,
1922
,
Dampf- und Gasturbinen: Mit einem Anhang über die Aussichten der Wärmekraftmaschinen
,
Springer
,
Berlin
.
52.
Schobeiri
,
M.
,
2005
,
Turbomachinery Flow Physics and Dynamic Performance
,
Springer
,
Berlin
.
53.
Camporeale
,
S. M.
,
Dumas
,
A.
, and
Fortunato
,
B.
,
2000
, “
Dynamic Modelling of Recuperative Gas Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
214
(3), pp.
213
225
.
54.
Haglind
,
F.
, and
Elmegaard
,
B.
,
2009
, “
Methodologies for Predicting the Part-Load Performance of Aero-Derivative Gas Turbines
,”
Energy
,
34
(
10
), pp.
1484
1492
.
55.
Dassault Systèmes
,
2014
, “
Thermal Power Library
,” Dassault Systèmes, Vélizy-Villacoublay, France, accessed June 7, 2015, www.3ds.com
56.
Benato
,
A.
,
Kaern
,
M.
,
Pierobon
,
L.
,
Stoppato
,
A.
, and
Haglind
,
F.
,
2015
, “
Analysis of Hot Spots in Boilers of Organic Rankine Cycle Units During Transient Operation
,”
Appl. Energy
,
151
, pp.
119
131
.
57.
ESCOA
,
1979
, “
ESCOA Turb-X HF Rating Instructions
,” ESCOA Corporation, Pryor, OK.
58.
Gnielinski
,
V.
,
1976
, “
New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
59.
Verein Deutscher Ingenieure
,
1953
,
VDI-Wärmeatlas: Berechnungsblätter für den Wärmeübergang
,
Springer-Verlag
,
Berlin
.
60.
Konakov
,
P. K.
,
Filimonov
,
S. S.
, and
Khrustalev
,
B. A.
,
1957
, “
Calculation of Heat Exchange in Boiler Furnaces
,”
Teploenergetika
,
4
(
8
), pp.
48
53
.
61.
Weirman
,
C.
,
1976
, “
Correlations Ease the Selection of Finned Tubes
,”
Oil Gas J.
,
74
(
36
), pp.
94
100
.
62.
Pezzuolo
,
A.
,
Benato
,
A.
,
Stoppato
,
A.
, and
Mirandola
,
A.
,
2016
, “
The ORC-PD: A Versatile Tool for Fluid Selection and Organic Rankine Cycle Unit Design
,”
Energy
,
102
, pp.
605
620
.
63.
Wagner
,
W.
, and
Rukes
,
B.
,
1998
, “
IAPWS-IF97: The New Industrial Formulation
,”
Brennst.-Warme-Kraft
,
50
(
3
), pp.
42
–47.
64.
Benato
,
A.
,
Stoppato
,
A.
,
Pierobon
,
L.
, and
Haglind
,
F.
,
2014
, “
Dynamic Performance of a Combined Gas Turbine and Air Bottoming Cycle Plant for Off-Shore Applications
,”
ASME
Paper No. ESDA2014-20105.
65.
Bracco
,
S.
,
2011
, “
Thermal Stress in Steam Drums: Life Consumption Evaluation Model
,”
XXIX National Heat Transfer Conference
, Torino, Italy, June 20–22.
You do not currently have access to this content.