Solar chimney or Trombe wall has been studied numerically and analytically. Analytical results available in the literature overestimate air flow rate by 46–97%. While insulated walls are used in the experiments, there might still be loss from the chimney walls, which is not usually considered in the available analytical models. It is found that the overestimation of air flow rate can be reduced to 3–14% by including heat losses from the glass and wall side of the chimney in the analytical model. The presently developed numerical model is validated against experimental data from literature. The conditions within which the analytical solution can give good approximate results regarding the air volume flow rate have been identified and discussed. We found that the analytical method simulates solar chimneys well for gap widths of up to 0.3 m and incident radiation above 500 W/m2. The present numerical results revealed that the optimum value of chimney gap width that maximizes the induced flow through the chimney is 0.3 m.

References

1.
Wong
,
K. V.
,
Dai
,
Y.
, and
Paul
,
B.
,
2012
, “
Anthropogenic Heat Release Into the Environment
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041602
.
2.
Wong
,
K. V.
, and
Tan
,
N.
,
2015
, “
Feasibility of Using More Geothermal Energy to Generate Electricity
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
41201
.
3.
Khanjari
,
A.
,
Sarreshtehdari
,
A.
, and
Mahmoodi
,
E.
,
2017
, “
Modeling of Energy and Exergy Efficiencies of a Wind Turbine Based on the Blade Element Momentum Theory Under Different Roughness Intensities
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022006
.
4.
Nihous
,
G. C.
,
2005
, “
An Order-of-Magnitude Estimate of Ocean Thermal Energy Conversion Resources
,”
ASME J. Energy Resour. Technol.
,
127
(
4
), p.
328
.
5.
Rajagopalan
,
K.
, and
Nihous
,
G. C.
,
2013
, “
An Assessment of Global Ocean Thermal Energy Conversion Resources With a High-Resolution Ocean General Circulation Model Global
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), pp.
041202
041209
.
6.
Farahbod
,
F.
,
Mowla
,
D.
,
Nasr
,
M. R. J.
, and
Soltanieh
,
M.
,
2012
, “
Investigation of Solar Desalination Pond Performance Experimentally and Mathematically
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
41201
.
7.
Farahbod
,
F.
, and
Farahmand
,
S.
,
2014
, “
Experimental Study of Solar-Powered Desalination Pond as Second Stage in Proposed Zero Discharge Desalination Process
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), pp.
031202
031208
.
8.
Hussain
,
F. M.
, and
Al-Sulaiman
,
F. A.
,
2016
, “
Exergy Analysis of Solar Chimney for Saudi Arabian Weather Conditions
,”
ASME
Paper No. ES2016-59211.
9.
Ürge-Vorsatz
,
D.
,
Cabeza
,
L. F.
,
Serrano
,
S.
,
Barreneche
,
C.
, and
Petrichenko
,
K.
,
2015
, “
Heating and Cooling Energy Trends and Drivers in Buildings
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
85
98
.
10.
Ong
,
K. S.
,
2003
, “
A Mathematical Model of a Solar Chimney
,”
Renewable Energy
,
28
(
7
), pp.
1047
1060
.
11.
Sparrow
,
E. M.
, and
Azevedo
,
L. F. A.
,
1985
, “
Vertical-Channel Natural Convection Spanning Between the Fully-Developed Limit and the Single-Plate Boundary-Layer Limit
,”
Int. J. Heat Mass Transfer
,
28
(
10
), pp.
1847
1857
.
12.
Du
,
Z.-G.
, and
Bilgen
,
E.
,
1990
, “
Natural Convection in Composite Wall Collectors With Porous Absorber
,”
Sol. Energy
,
45
(
6
), pp.
325
332
.
13.
Barozzi
,
G. S.
,
Imbabi
,
M. S. E.
,
Nobile
,
E.
, and
Sousa
,
A. C. M.
,
1992
, “
Physical and Numerical Modelling of a Solar Chimney-Based Ventilation System for Buildings
,”
Build. Environ.
,
27
(
4
), pp.
433
445
.
14.
Bansal
,
N. K.
,
Mathur
,
R.
, and
Bhandari
,
M. S.
,
1993
, “
Solar Chimney for Enhanced Stack Ventilation
,”
Build. Environ.
,
28
(
3
), pp.
373
377
.
15.
Bouchair
,
A.
,
Fitzgerald
,
D.
, and
Tinker
,
J.
,
1988
, “
Moving Air Using Stored Solar Energy
,”
13th National Passive Solar Conference
, Cambridge, MA, June 20–24, pp.
33
38
.
16.
Bouchair
,
A.
,
1994
, “
Solar Chimney for Promoting Cooling Ventilation in Southern Algeria
,”
Build. Serv. Eng. Res. Technol.
,
15
(
2
), pp.
81
93
.
17.
Gan
,
G.
,
1998
, “
A Parametric Study of Trombe Walls for Passive Cooling of Buildings
,”
Energy Build.
,
27
(
1
), pp.
37
43
.
18.
Hirunlabh
,
J.
,
Kongduang
,
W.
,
Namprakai
,
P.
, and
Khedari
,
J.
,
1999
, “
Study of Natural Ventilation of Houses by a Metallic Solar Wall Under Tropical Climate
,”
Renewable Energy
,
18
(
1
), pp.
109
119
.
19.
Afonso
,
C.
, and
Oliveira
,
A.
,
2000
, “
Solar Chimneys: Simulation and Experiment
,”
Energy Build.
,
32
(
1
), pp.
71
79
.
20.
AboulNaga
,
M. M.
, and
Abdrabboh
,
S. N.
,
2000
, “
Improving Night Ventilation Into Low-Rise Buildings in Hot-Arid Climates Exploring a Combined Wall-Roof Solar Chimney
,”
Renewable Energy
,
19
(
1–2
), pp.
47
54
.
21.
Ong
,
K. S.
, and
Chow
,
C. C.
,
2003
, “
Performance of a Solar Chimney
,”
Sol. Energy
,
74
(
1
), pp.
1
17
.
22.
Arce
,
J.
,
Jiménez
,
M. J.
,
Guzmán
,
J. D.
,
Heras
,
M. R.
,
Alvarez
,
G.
, and
Xamán
,
J.
,
2009
, “
Experimental Study for Natural Ventilation on a Solar Chimney
,”
Renewable Energy
,
34
(
12
), pp.
2928
2934
.
23.
Burek
,
S. A. M.
, and
Habeb
,
A.
,
2007
, “
Air Flow and Thermal Efficiency Characteristics in Solar Chimneys and Trombe Walls
,”
Energy Build.
,
39
(
2
), pp.
128
135
.
24.
Zamora
,
B.
, and
Kaiser
,
A. S.
,
2009
, “
Optimum Wall-to-Wall Spacing in Solar Chimney Shaped Channels in Natural Convection by Numerical Investigation
,”
Appl. Therm. Eng.
,
29
(
4
), pp.
762
769
.
25.
Suárez-López
,
M. J.
,
Blanco-Marigorta
,
A. M.
,
Gutiérrez-Trashorras
,
A. J.
,
Pistono-Favero
,
J.
, and
Blanco-Marigorta
,
E.
,
2015
, “
Numerical Simulation and Exergetic Analysis of Building Ventilation Solar Chimneys
,”
Energy Convers. Manage.
,
96
, pp.
1
11
.
26.
Khanal
,
R.
, and
Lei
,
C.
,
2015
, “
A Numerical Investigation of Buoyancy Induced Turbulent Air Flow in an Inclined Passive Wall Solar Chimney for Natural Ventilation
,”
Energy Build.
,
93
, pp.
217
226
.
27.
Bacharoudis
,
E.
,
Vrachopoulos
,
M. G.
,
Koukou
,
M. K.
,
Margaris
,
D.
,
Filios
,
A. E.
, and
Mavrommatis
,
S. A.
,
2007
, “
Study of the Natural Convection Phenomena Inside a Wall Solar Chimney With One Wall Adiabatic and One Wall Under a Heat Flux
,”
Appl. Therm. Eng.
,
27
(
13
), pp.
2266
2275
.
28.
Bansal
,
N. K.
,
Mathur
,
J.
,
Mathur
,
S.
, and
Jain
,
M.
,
2005
, “
Modeling of Window-Sized Solar Chimneys for Ventilation
,”
Build. Environ.
,
40
(
10
), pp.
1302
1308
.
29.
Sandberg
,
M.
, and
Moshfegh
,
B.
,
2002
, “
Buoyancy-Induced Air Flow in Photovoltaic Facades Effect of Geometry of the Air Gap and Location of Solar Cell Modules
,”
Build. Environ.
,
37
(
3
), pp.
211
218
.
30.
Chen
,
Z. D.
,
Bandopadhayay
,
P.
,
Halldorsson
,
J.
,
Byrjalsen
,
C.
,
Heiselberg
,
P.
, and
Li
,
Y.
,
2003
, “
An Experimental Investigation of a Solar Chimney Model With Uniform Wall Heat Flux
,”
Build. Environ.
,
38
(
7
), pp.
893
906
.
31.
Jing
,
H.
,
Chen
,
Z.
, and
Li
,
A.
,
2015
, “
Experimental Study of the Prediction of the Ventilation Flow Rate Through Solar Chimney With Large Gap-to-Height Ratios
,”
Build. Environ.
,
89
, pp.
150
159
.
32.
Flourentzou
,
F.
,
Van der Maas
,
J.
, and
Roulet
,
C.-A.
,
1998
, “
Natural Ventilation for Passive Cooling: Measurement of Discharge Coefficients
,”
Energy Build.
,
27
(
3
), pp.
283
292
.
33.
Swinbank
,
W. C.
,
1963
, “
Longwave Radiation From Clear Skies
,”
Q. J. R. Meteorol. Soc.
,
89
(
381
), pp.
339
348
.
34.
McAdams
,
W. H.
,
1954
,
Heat Transmission
,
McGraw-Hill
,
New York
.
35.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
36.
White
,
F. M.
, and
Corfield
,
I.
,
2006
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
37.
Howell
,
J. R.
,
Menguc
,
M. P.
, and
Siegel
,
R.
,
2010
,
Thermal Radiation Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
38.
Rubin
,
M.
,
1985
, “
Optical Properties of Soda Lime Silica Glasses
,”
Sol. Energy Mater.
,
12
(
4
), pp.
275
288
.
39.
Hsieh
,
C. K.
, and
Su
,
K. C.
,
1979
, “
Thermal Radiative Properties of Glass From 0.32 to 206 μm
,”
Sol. Energy
,
22
(
1
), pp.
37
43
.
You do not currently have access to this content.