In this paper, the aerodynamics of two vertical axis wind turbines (VAWTs) are discussed, on the basis of a wide set of experiments performed at Politecnico di Milano, Milan, Italy. A H-shaped and a Troposkien Darrieus turbine for microgeneration, featuring the same swept area and blade section, are tested at full-scale. Performance measurements show that the Troposkien rotor outperforms the H-shaped turbine, thanks to the larger midspan section of the Troposkien rotor and to the nonaerodynamic struts of the H-shaped rotor. These features are consistent with the character of the wakes shed by the turbines, measured by means of hot wire anemometry on several surfaces downstream of the models. The H-shape and Troposkien turbine wakes exhibit relevant differences in the three-dimensional morphology and unsteady evolution. In particular, large-scale vortices dominate the tip region of the wake shed by the H-shape turbine; these vortices pulsate significantly during the period, due to the periodic fluctuation of the blade aerodynamic loading. Conversely, the highly tapered shape of the Troposkien rotor not only prevents the onset of tip vortices, but also induces a dramatic spanwise reduction of tip speed ratio (TSR), promoting the onset of local dynamic stall marked by high periodic and turbulent unsteadiness in the tip region of the wake. The way in which these mechanisms affect the wake evolution and mixing process for the two classes of turbines is investigated for different tip speed ratios, highlighting some relevant implications in the framework of wind energy exploitation.

References

1.
Paulsen
,
U. S.
,
Pedersen
,
T. F.
,
Madsen
,
H. A.
,
Enevoldsen
,
K.
,
Nielsen
,
P. H.
,
Hattel
,
J.
,
Zanne
,
L.
,
Battisti
,
L.
,
Brighenti
,
A.
,
Lacaze
,
M.
,
Lim
,
V.
,
Heinen
,
J. W.
,
Berthelsen
,
P. A.
,
Carstensen
,
S.
,
de Ridder
,
E. J.
,
van Bussel
,
G.
, and
Tescione
,
G.
,
2011
, “
DeepWind–An Innovative Wind Turbine Concept for Offshore
,”
European Wind Energy Association Conference Proceedings
(
EWEA
), Brussels, Belgium, Mar. 14–17.
2.
Mertens
,
S.
,
van Kuik
,
G.
, and
van Bussel
,
G.
,
2003
, “
Performance of an H-Darrieus in the Skewed Flow on a Roof
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
433
440
.
3.
Balduzzi
,
A.
,
Bianchini
,
A.
,
Carnevale
,
E. A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
Feasibility Analysis of a Darrieus Vertical-Axis Wind Turbine Installation in the Rooftop of a Building
,”
Appl. Energy
,
97
, pp.
921
929
.
4.
Blackwell
,
B. F.
,
Sheldahl
,
R. E.
, and
Feltz
,
L. V.
,
1976
, “
Wind Tunnel Performance Data for the Darrieus Wind Turbine With NACA 0012 Blades
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND76-0130.
5.
Sheldahl
,
R. E.
, and
Blackwell
,
B. F.
,
1977
, “
Free-Air Performance Tests of a 5-Metre-Diameter Darrieus Turbine
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND77-1063.
6.
Worstell
,
M. H.
,
1980
, “
Measured Aerodynamic and System Performance of the 17-m Research Machine
,”
VAWT
Design Technology Seminar for Industry Proceedings
, Albuquerque, NM, Apr. 1–3, pp.
233
258
.
7.
Sheldahl
,
R. E.
,
1981
, “
Comparison of Field and Wind Tunnel Darrieus Wind Turbine Data
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND80-2469.
8.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design: With Emphasis on Darrieus Concept
,
Polytechnic International Press
,
Canada
.
9.
Bhatti
,
T. S. S.
, and
Kothari
,
D. P.
,
2005
, “
Early Development of Modern Vertical and Horizontal Axis Wind Turbines: A Review
,”
Wind Eng.
,
29
(
3
), pp.
287
299
.
10.
Eriksson
,
S.
,
Bernhoff
,
H.
, and
Leijon
,
M.
,
2008
, “
Evaluation of Different Turbine Concepts for Wind Power
,”
Renewable Sustainable Energy Rev.
,
12
(
5
), pp.
1419
1434
.
11.
Bhutta
,
M. M. A.
,
Hayat
,
N.
,
Farooq
,
A. U.
,
Ali
,
Z.
,
Jamil
,
S. R.
, and
Hussain
,
Z.
,
2012
, “
Vertical Axis Wind Turbine–A Review of Various Configurations and Design Techniques
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
1926
1939
.
12.
Shamsoddin
,
S.
, and
Porté-Agel
,
F.
,
2014
, “
Large Eddy Simulation of Vertical Axis Wind Turbine Wakes
,”
Energies
,
7
(
2
), pp.
890
912
.
13.
Nini
,
M.
,
Motta
,
V.
,
Bindolino
,
G.
, and
Guardone
,
A.
,
2014
, “
Three-Dimensional Simulation of a Complete Vertical Axis Wind Turbine Using Overlapping Grids
,”
J. Comput. Appl. Math.
,
270
, pp.
78
87
.
14.
Bassi
,
F.
,
Ghidoni
,
A.
,
Perbellini
,
A.
,
Rebay
,
S.
,
Crivellini
,
A.
,
Franchina
,
N.
, and
Savini
,
M.
,
2014
, “
A High-Order Discontinuous Galerkin Solver for the Incompressible RANS and kω Turbulence Model Equations
,”
Comput. Fluids
,
98
, pp.
54
68
.
15.
Balduzzi
,
A.
,
Bianchini
,
A.
,
Gigante
,
F. A.
,
Ferrara
,
G.
,
Campobasso
,
M. S.
, and
Ferrari
,
L.
,
2015
, “
Parametric and Comparative Assessment of Navier–Stokes CFD Methodologies for Darrieus Wind Turbine Performance Analysis
,”
ASME
Paper No. GT2015-42663.
16.
Ferreira
,
C. J. S.
,
van Bussel
,
G. J. W.
, and
van Kuik
,
G. A. M.
,
2006
, “
Wind Tunnel Hotwire Measurements, Flow Visualization and Thrust Measurement of a VAWT in Skew
,”
ASME J. Sol. Energy Eng.
,
128
(
4
), pp.
487
497
.
17.
Ferreira
,
C. J. S.
,
van Bussel
,
G. J. W.
, and
Scarano
,
F.
,
2007
, “
2D PIV Visualization of Dynamic Stall on a Vertical Axis Wind Turbine
,”
AIAA
Paper No. 2007-1366.
18.
Ferreira
,
C. J. S.
,
Dixon
,
K.
,
Hofemann
,
C.
, and
van Bussel
,
G. J. W.
,
2009
, “
The VAWT in Skew: Stereo-PIV and Vortex Modeling
,”
AIAA
Paper No. 2009-1219.
19.
Ferreira
,
C. J. S.
,
van Kuik
,
G. A. M.
,
van Bussel
,
G. J. W.
, and
Scarano
,
F.
,
2009
, “
Visualization by PIV of Dynamic Stall on a Vertical Axis Wind Turbine
,”
Exp. Fluids
,
46
(
1
), pp.
97
108
.
20.
Tescione
,
G.
,
Ragni
,
D.
,
He
,
C.
,
Ferreira
,
C. S. J.
, and
van Bussel
,
G. J. W.
,
2014
, “
Near Wake Flow Analysis of a Vertical Axis Wind Turbine by Stereoscopic Particle Image Velocimetry
,”
Renewable Energy
,
70
, pp.
47
71
.
21.
Dossena
,
V.
,
Persico
,
G.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Dell'Anna
,
S.
,
Benini
,
E.
, and
Brighenti
,
A.
,
2015
, “
An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in Confined and Unconfined Environment
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051207
.
22.
Mercker
,
E.
, and
Wiedemann
,
J.
,
1996
, “
On the Correction of Interference Effects in Open Jet Wind Tunnels
,” SAE International, Warrendale, PA,
Technical Report No. 960671
.
23.
ISO
,
1999
, “
Guide to the Expression of Uncertainty in Measurement
,” ISO, Geneva, Switzerland, Standard No. ISO ENV 13005.
24.
Worstell
,
M. H.
,
1981
, “
Aerodynamic Performance of the DOE/Sandia 17 m Diameter Vertical-Axis Wind Turbine
,”
J. Energy
,
5
(
1
), pp.
39
42
.
25.
Sutherland
,
H. J.
,
Berg
,
D. E.
, and
Ashwill
,
T. D.
,
2012
, “
A Retrospective of Vawt Technology
,” Sandia National Laboratories, Albuquerque, NM,
Technical Report No. SAND2012-0304
.
26.
Hoerner
,
S. F.
,
1951
,
Aerodynamic Drag
,
Otterbein Press
,
Dayton, OH
.
27.
Brochier
,
G.
,
Fraunie
,
P.
,
Beguier
,
C.
, and
Paraschivoiu
,
I.
,
1986
, “
Water Channel Experiments of Dynamic Stall on Darrieus Wind Turbine Blades
,”
AIAA J. Propul. Power
,
2
(
5
), pp.
445
449
.
28.
Dyachuk
,
E.
, and
Goude
,
A.
,
2015
, “
Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model
,”
Energies
,
8
(
2
), pp.
1353
1372
.
29.
Migliore
,
P. G.
, and
Cheney
,
M. C.
,
2000
, “
Feasibility Study of Pultruded Blades for Wind Turbine Rotors
,” National Renewable Energy Laboratory, Golden, CO,
Technical Report No. NREL/CP-500-27506
.
30.
Fujisawa
,
N.
, and
Shibuya
,
S.
,
2001
, “
Observations of Dynamic Stall on Darrieus Wind Turbine Blades
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
2
), pp.
201
214
.
You do not currently have access to this content.