The design, construction, and experimental evaluation of a cascade thermoacoustic engine are presented in this paper. The system was designed and built under the constraint of an inexpensive device to meet the energy needs of the people based in remote and rural areas. From the cost and straightforward system point of view, the air at atmospheric pressure was applied as a working fluid, and the main resonator tubes were then constructed of conventional polyvinyl chloride (PVC) pipes. Such device consists of one standing-wave unit and one traveling-wave unit connected in series. This topology is preferred because the traveling-wave unit provides an efficient energy conversion, and a straight-line series configuration is easy to build and allows no Gedeon streaming. The system was designed to operate at a low frequency of about 57 Hz. The measured results were in a reasonably good agreement with the predicted results. So far, this system can deliver up to 61 W of acoustic power, which was about 17% of the Carnot efficiency. In the further step, the proposed device will be applied as the prime mover for driving the thermoacoustic refrigerator.

References

1.
Yu
,
Z.
,
Jaworski
,
A. J.
, and
Backhaus
,
S.
,
2012
, “
Travelling-Wave Thermoacoustic Electricity Generator Using an Ultra-Compliant Alternator for Utilization of Low-Grade Thermal Energy
,”
Appl. Energy
,
99
, pp.
135
145
.
2.
Wu
,
Z.
,
Dai
,
W.
,
Man
,
M.
, and
Luo
,
E.
,
2012
, “
A Solar-Powered Traveling-Wave Thermoacoustic Electricity Generator
,”
Sol. Energy
,
86
(
9
), pp.
2376
2382
.
3.
Bi
,
T.
,
Wu
,
Z.
,
Zhang
,
L.
,
Yu
,
G.
,
Luo
,
E.
, and
Dai
,
W.
,
2015
, “
Development of a 5 kW Traveling-Wave Thermoacoustic Electric Generator
,”
Appl. Energy
,
185
(
1
), pp.
1355
1361
.
4.
Hariharan
,
N. M.
,
Sivashanmugam
,
P.
, and
Kasthurirengan
,
S.
,
2013
, “
Experimental Investigation of a Thermoacoustic Refrigerator Driven by a Standing Wave Twin Thermoacoustic Prime Mover
,”
Int. J. Refrig.
,
36
(
8
), pp.
2420
2425
.
5.
Boroujerdi
,
A. A.
, and
Ziabasharhagh
,
M.
,
2014
, “
Investigation of a High Frequency Pulse Tube Cryocooler Driven by a Standing Wave Thermoacoustic Engine
,”
Energy Convers. Manage.
,
86
, pp.
194
203
.
6.
Zhang
,
X.
,
Chang
,
J.
,
Cai
,
S.
, and
Hu
,
J.
,
2016
, “
A Multi-Stage Travelling Wave Thermoacoustic Engine Driven Refrigerator and Operation Features for Utilizing Low Grade Energy
,”
Energy Convers. Manage.
,
114
, pp.
224
233
.
7.
Adeff
,
J. A.
, and
Hofler
,
T. J.
,
2000
, “
Design and Construction of a Solar Powered Thermoacoustically Driven Thermoacoustic Refrigerator
,”
J. Acoust. Soc. Am.
,
107
(6), pp.
37
42
.
8.
De Blok
,
K.
,
2008
, “
Low Operating Temperature Integral Thermoacoustic Devices for Solar Cooling and Waste Heat Recovery
,”
J. Acoust. Soc. Am.
,
123
(
5
), pp.
3541
3541
.
9.
Gardner
,
D. L.
, and
Howard
,
C. Q.
,
2009
, “
Waste-Heat-Driven Thermoacoustic Engine and Refrigerator
,”
ACOUSTICS
, Adelaide, Australia, Nov. 23–25.
10.
Yang
,
Z.
,
Zhuo
,
Y.
,
Ercang
,
L.
, and
Yuan
,
Z.
,
2014
, “
Travelling-Wave Thermoacoustic High-Temperature Heat Pump for Industrial Waste Heat Recovery
,”
Energy
,
77
, pp.
397
402
.
11.
Wheatley
,
J.
,
Hofler
,
T.
, and
Swift
,
G. W.
,
1983
, “
An Intrinsically Irreversible Thermoacoustic Heat Engine
,”
J. Acoust. Soc. Am.
,
74
(
1
), pp.
153
170
.
12.
Swift
,
G. W.
,
1988
, “
Thermoacoustic Engines
,”
J. Acoust. Soc. Am.
,
84
(
4
), pp.
1145
1180
.
13.
Ceperley
,
P. H.
,
1979
, “
A Pistonless Stirling Engine—the Traveling Wave Heat Engine
,”
J. Acoust. Soc. Am.
,
66
(
5
), pp.
1508
1513
.
14.
Ceperley
,
P. H.
,
1985
, “
Gain and Efficiency of a Short Traveling Wave Heat Engine
,”
J. Acoust. Soc. Am.
,
77
(
3
), pp.
1239
1244
.
15.
Yazaki
,
T.
,
Iwata
,
A.
,
Maekawa
,
T.
, and
Tominaga
,
A.
,
1998
, “
Traveling Wave Thermoacoustic Engine in a Looped Tube
,”
Phys. Rev. Lett.
,
81
(
15
), pp.
3128
3131
.
16.
Backhaus
,
S. N.
, and
Swift
,
G. W.
,
2000
, “
A Thermoacoustic-Stirling Heat Engine: Detailed Study
,”
J. Acoust. Soc. Am.
,
107
(
6
), pp.
3148
3166
.
17.
Gardner
,
D. L.
, and
Swift
,
G. W.
,
2003
, “
A Cascade Thermoacoustic Engine
,”
J. Acoust. Soc. Am.
,
114
(
4
), pp.
1905
1919
.
18.
Biwa
,
T.
,
Tashiro
,
Y.
, and
Mizutani
,
U.
,
2004
, “
Experimental Demonstration of Thermoacoustic Energy Conversion in a Resonator
,”
Phys. Rev. E
,
69
(
066304
), pp.
1
6
.
19.
Hu
,
Z. J.
,
Li
,
Q.
,
Li
,
Q.
, and
Li
,
Z. Y.
,
2006
, “
A High Frequency Cascade Thermoacoustic Engine
,”
Cryogenics
,
46
(
11
), pp.
771
777
.
20.
Hu
,
Z. J.
,
Li
,
Q.
,
Xie
,
X.
,
Zhou
,
G.
, and
Li
,
Q.
,
2006
, “
Design and Experiment on a Mini Cascade Thermoacoustic Engine
,”
Ultrasonics
,
44
, pp.
e1515
e1517
.
21.
Ward
,
B.
,
Clark
,
J.
, and
Swift
,
G. W.
, “
Design Environment for Low-Amplitude Thermoacoustic Energy Conversion, DELTAEC Version 6.2: Users Guide2008
,” Los Alamos National Laboratory.
22.
Kang
,
H.
,
Jiang
,
F.
,
Zheng
,
H.
, and
Jaworski
,
A. J.
,
2013
, “
Thermoacoustic Travelling-Wave Cooler Driven by a Cascade Thermoacoustic Engine
,”
Appl. Therm. Eng.
,
59
(1–2), pp.
223
231
.
23.
Swift
,
G. W.
,
2002
,
Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators
,
Acoustical Society of America
,
New York
.
24.
Fusco
,
A. M.
,
Ward
,
W. C.
, and
Swift
,
G. W.
,
1992
, “
Two-Sensor Power Measurements in Lossy Ducts
,”
J. Acoust. Soc. Am.
,
91
(
4
), pp.
2229
2235
.
You do not currently have access to this content.