Optimization of oil production from petroleum reservoirs is an interesting and complex problem which can be done by optimal control of well parameters such as their flow rates and pressure. Different optimization techniques have been developed yet, and metaheuristic algorithms are commonly employed to enhance oil recovery projects. Among different metaheuristic techniques, the genetic algorithm (GA) and the particle swarm optimization (PSO) have received more attention in engineering problems. These methods require a population and many objective function calls to approach more the global optimal solution. However, for a water flooding project in a reservoir, each function call requires a long time reservoir simulation. Hence, it is necessary to reduce the number of required function evaluations to increase the rate of convergence of optimization techniques. In this study, performance of GA and PSO are compared with each other in an enhanced oil recovery (EOR) project, and Newton method is linked with PSO to improve its convergence speed. Furthermore, hybrid genetic algorithm-particle swarm optimization (GA-PSO) as the third optimization technique is introduced and all of these techniques are implemented to EOR in a water injection project with 13 decision variables. Results indicate that PSO with Newton method (NPSO) is remarkably faster than the standard PSO (SPSO). Also, the hybrid GA-PSO method is more capable of finding the optimal solution with respect to GA and PSO. In addition, GA-PSO, NPSO, and GA-NPSO methods are compared and, respectively, GA-NPSO and NPSO showed excellence over GA-PSO.

References

1.
Hoffman
,
B. T.
, and
Shoaib
,
S.
,
2013
, “
CO2 Flooding to Increase Recovery for Unconventional Liquids-Rich Reservoirs
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022801
.
2.
Liu
,
Z.
,
Li
,
Y.
,
Lv
,
J.
,
Li
,
B.
, and
Chen
,
Y.
,
2017
, “
Optimization of Polymer Flooding Design in Conglomerate Reservoirs
,”
J. Pet. Sci. Eng.
,
152
, pp.
267
274
.
3.
Yasari
,
E.
,
Pishvaie
,
M. R.
,
Khorasheh
,
F.
,
Salahshoor
,
K.
, and
Kharrat
,
R.
,
2013
, “
Application of Multi-Criterion Robust Optimization in Water-Flooding of Oil Reservoir
,”
J. Pet. Sci. Eng.
,
109
, pp.
1
11
.
4.
Ding
,
S.
,
Jiang
,
H.
,
Li
,
J.
, and
Tang
,
G.
,
2014
, “
Optimization of Well Placement by Combination of a Modified Particle Swarm Optimization Algorithm and Quality Map Method
,”
Comput. Geosci.
,
18
(
5
), pp.
747
762
.
5.
Asheim
,
H.
,
1987
, “
Optimal Control of Water Drive
,”
SPE
Paper No. SPE-15978-MS.https://www.onepetro.org/general/SPE-15978-MS
6.
Asheim
,
H.
,
1988
, “
Maximization of Water Sweep Efficiency by Controlling Production and Injection Rates
,”
European Petroleum Conference
, London, Oct. 16–19,
SPE
Paper No. SPE-18365-MS.
7.
Sudaryanto
,
B.
, and
Yortsos
,
Y. C.
,
2001
, “
Optimization of Displacements in Porous Media Using Rate Control
,”
SPE Annual Technical Conference and Exhibition
, New Orleans, LA, Sept. 30–Oct. 3,
SPE
Paper No. SPE-71509-MS.
8.
Brouwer
,
D. R.
,
Jansen
,
J. D.
,
Van der Starre
,
S.
,
Van Kruijsdijk
,
C.
, and
Berentsen
,
C. W. J.
,
2001
, “
Recovery Increase Through Water Flooding With Smart Well Technology
,”
SPE European Formation Damage Conference
, The Hague, The Netherlands, May 21–22,
SPE
Paper No. SPE-68979-MS.
9.
Xu
,
S.
,
Zeng
,
F.
,
Chang
,
X.
, and
Liu
,
H.
,
2013
, “
A Systematic Integrated Approach for Waterflooding Optimization
,”
J. Pet. Sci. Eng.
,
112
, pp.
129
138
.
10.
Bostan
,
M.
,
Kharrat
,
R.
, and
Barjas
,
A.
,
2013
, “
Injection Efficiency and Water Loss Optimization Using Streamline Simulation in Water Flooding Process
,”
Pet. Sci. Technol.
,
31
(
14
), pp.
1477
1487
.
11.
Azamipour
,
V.
,
Assareh
,
M.
,
Dehghani
,
M. R.
, and
Mittermeir
,
G. M.
,
2017
, “
An Efficient Workflow for Production Allocation During Water Flooding
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), pp.
1
10
.
12.
Zhang
,
L.
,
Zhang
,
K.
,
Chen
,
Y.
,
Li
,
M.
,
Yao
,
J.
,
Li
,
L.
, and
Lee
,
J.
,
2015
, “
Smart Well Pattern Optimization Using Gradient Algorithm
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012901
.
13.
Harding
,
T. J.
,
Radcliffe
,
N. J.
, and
King
,
P. R.
,
1998
, “
Hydrocarbon Production Scheduling With Genetic Algorithms
,”
SPE J.
,
3
(2), pp. 99–107.
14.
Hajizadeh
,
Y.
,
2007
, “
Viscosity Prediction of Crude Oils With Genetic Algorithms
,”
Latin American & Caribbean Petroleum Engineering Conference
, Buenos Aires, Argentina, Apr. 15–18,
SPE
Paper No. SPE-106763-MS.
15.
Emerick
,
A. A.
,
Silva
,
E.
,
Messer
,
B.
,
Almeida
,
L. F.
,
Szwarcman
,
D.
,
Pacheco
,
M. A. C.
, and
Vellasco
,
M. M. B. R.
,
2009
, “
Well Placement Optimization Using a Genetic Algorithm With Nonlinear Constraints
,”
SPE Reservoir Simulation Symposium
, The Woodlands, TX, Feb. 2–4,
SPE
Paper No. SPE-118808-MS.
16.
Rahmati
,
E.
,
Aminshahidy
,
B.
, and
Pishvaie
,
M. R.
,
2013
, “
A Comparison Between Two Evolutionary Optimization Algorithms in the Performance of the Pressure Maintenance Process in a Multi Layer Reservoir Model
,”
Pet. Sci. Technol.
,
31
(
1
), pp.
51
61
.
17.
Mamghaderi
,
A.
,
Bastami
,
A.
, and
Pourafshary
,
P.
,
2012
, “
Optimization of Waterflooding Performance in a Layered Reservoir Using a Combination of Capacitance-Resistive Model and Genetic Algorithm Method
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013102
.
18.
Kashkooli
,
S. H. B.
,
Masihi
,
M.
, and
Pishvaei
,
M. R.
,
2014
, “
Dynamic Optimization of Water Flood Reservoirs With the Variational Approach
,”
Pet. Sci. Technol.
,
32
(
3
), pp.
289
296
.
19.
Azamipour
,
V.
,
Assareh
,
M.
, and
Mittermeir
,
G. M.
,
2017
, “
An Improved Optimization Procedure for Production and Injection Scheduling Using a Hybrid Genetic Algorithm
,”
Chem. Eng. Res. Des.
,
131
, pp. 557–570.https://www.sciencedirect.com/science/article/pii/S0263876217306408
20.
Manshad
,
A. K.
,
Rostami
,
H.
,
Rezaei
,
H.
, and
Hosseini
,
S. M.
,
2015
, “
Application of Artificial Neural Network-Particle Swarm Optimization Algorithm for Prediction of Asphaltene Precipitation During Gas Injection Process and Comparison With Gaussian Process Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062904
.
21.
Liu
,
L.
, and
Liu
,
C.
,
2012
, “
A Novel Combined Particle Swarm Optimization and Genetic Algorithm MPPT Control Method for Multiple Photovoltaic Arrays at Partial Shading
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
012002
.
22.
Siavashi
,
M.
,
Garusi
,
H.
, and
Derakhshan
,
S.
,
2017
, “
Numerical Simulation and Optimization of Steam-Assisted Gravity Drainage With Temperature, Rate, and Well Distance Control Using an Efficient Hybrid Optimization Technique
,” Numer.
Heat Transfer Part A
,
72
(
9
), pp.
721
744
.
23.
Innocente
,
M. S.
,
Afonso
,
S. M. B.
,
Sienz
,
J.
, and
Davies
,
H. M.
,
2015
, “
Particle Swarm Algorithm With Adaptive Constraint Handling and Integrated Surrogate Model for the Management of Petroleum Fields
,”
Appl. Soft Comput.
,
34
, pp.
463
484
.
24.
Siavashi
,
M.
,
Tehrani
,
M. R.
, and
Nakhaee
,
A.
,
2016
, “
Efficient Particle Swarm Optimization of Well Placement to Enhance Oil Recovery Using a Novel Streamline-Based Objective Function
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052903
.
25.
Siavashi
,
M.
, and
Doranehgard
,
M. H.
,
2017
, “
Particle Swarm Optimization of Thermal Enhanced Oil Recovery From Oilfields With Temperature Control
,”
Appl. Therm. Eng.
,
123
, pp.
658
669
.
26.
Onwunalu
,
J. E.
, and
Durlofsky
,
L. J.
,
2010
, “
Application of a Particle Swarm Optimization Algorithm for Determining Optimum Well Location and Type
,”
Comput. Geosci.
,
14
(
1
), pp.
183
198
.
27.
Humphries
,
T. D.
, and
Haynes
,
R. D.
,
2015
, “
Joint Optimization of Well Placement and Control for Nonconventional Well Types
,”
J. Pet. Sci. Eng.
,
126
, pp.
242
253
.
28.
Afshari
,
S.
,
Pishvaie
,
M. R.
, and
Aminshahidy
,
B.
,
2014
, “
Well Placement Optimization Using a Particle Swarm Optimization Algorithm, a Novel Approach
,”
Pet. Sci. Technol.
,
32
(
2
), pp.
170
179
.
29.
Ramezanpour
,
M.
, and
Siavashi
,
M.
,
2018
, “
Application of SiO2–Water Nanofluid to Enhance Oil Recovery: A New Hybrid Optimization Approach Using Pattern Search and PSO Algorithms
,”
J. Therm. Anal. Calorim.
, epub.
30.
Chen
,
Z.
,
2007
,
Reservoir Simulation: Mathematical Techniques in Oil Recovery
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
31.
Peaceman
,
D. W.
,
1983
, “
Interpretation of Well-Block Pressures in Numerical Reservoir Simulation With Nonsquare Grid Blocks and Anisotropic Permeability
,”
SPE J.
,
23
(
3
), pp.
531
543
.
32.
Gan, M., Peng, H., and Chen, L., 2012, “
A Global-Local Optimization Approach to Parameter Estimation of RBF-Type Models
,”
Inf. Sci.
,
197
, pp. 144–160.
33.
Grimaccia
,
F.
,
Mussetta
,
M.
, and
Zich
,
R. E.
,
2007
, “
Genetical Swarm Optimization: Self-Adaptive Hybrid Evolutionary Algorithm for Electromagnetics
,”
IEEE Trans. Antennas Propag.
,
55
(
3
), pp.
781
785
.
34.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence
,
University of Michigan Press
, Ann Arbor, MI.
35.
Eberhart, R. C., and Kennedy, J., 1995, “
Particle Swarm Optimization
,”
IEEE
International Conference on Neural Networks
, Perth, Australia, Nov. 27–Dec. 1, pp. 1942–1948.
36.
Kao
,
Y.-T.
, and
Zahara
,
E.
,
2008
, “
A Hybrid Genetic Algorithm and Particle Swarm Optimization for Multimodal Functions
,”
Appl. Soft Comput.
,
8
(
2
), pp.
849
857
.
37.
Mhamdi
,
B.
,
Grayaa
,
K.
, and
Aguili
,
T.
,
2011
, “
Hybrid of Genetic Algorithm With Particle Swarm Optimization to Shape Reconstruction of Perfect Conducting Cylinders
,”
AEU—Int. J. Electron. Commun.
,
65
(
12
), pp.
1032
1039
.
38.
Man
,
K.-F.
,
Tang
,
K.-S.
, and
Kwong
,
S.
,
1996
, “
Genetic Algorithms: Concepts and Applications [in Engineering Design]
,”
IEEE Trans. Ind. Electron.
,
43
(
5
), pp.
519
534
.
39.
Mohammadi
,
A.
, and
Jazaeri
,
M.
,
2007
, “
A Hybrid Particle Swarm Optimization-Genetic Algorithm for Optimal Location of SVC Devices in Power System Planning
,”
42nd International Universities Power Engineering Conference
(
UPEC 2007
), Brighton, UK, Sept. 4–6, pp.
1175
1181
.
40.
Goldberg
,
D. E.
, and
Holland
,
J. H.
,
1988
, “
Genetic Algorithms and Machine Learning
,”
Mach. Learn.
,
3
(
2/3
), pp.
95
99
.
41.
Kennedy
,
J.
,
2011
, “
Particle Swarm Optimization
,”
Encyclopedia of Machine Learning
,
Springer
, New York, pp.
760
766
.
42.
Engelbrecht
,
A. P.
,
2006
,
Fundamentals of Computational Swarm Intelligence
,
Wiley
, New York.
43.
Thangaraj
,
R.
,
Pant
,
M.
,
Abraham
,
A.
, and
Bouvry
,
P.
,
2011
, “
Particle Swarm Optimization: Hybridization Perspectives and Experimental Illustrations
,”
Appl. Math. Comput.
,
217
(
12
), pp.
5208
5226
.
44.
Mahmoodabadi
,
M. J.
,
Safaie
,
A. A.
,
Bagheri
,
A.
, and
Nariman-Zadeh
,
N.
,
2013
, “
A Novel Combination of Particle Swarm Optimization and Genetic Algorithm for Pareto Optimal Design of a Five-Degree of Freedom Vehicle Vibration Model
,”
Appl. Soft Comput.
,
13
(
5
), pp.
2577
2591
.
45.
Clerc
,
M.
, and
Kennedy
,
J.
,
2002
, “
The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space
,”
IEEE Trans. Evol. Comput.
,
6
(
1
), pp.
58
73
.
46.
Robinson
,
J.
,
Sinton
,
S.
, and
Rahmat-Samii
,
Y.
,
2002
, “
Particle Swarm, Genetic Algorithm, and Their Hybrids: Optimization of a Profiled Corrugated Horn Antenna
,”
IEEE
Antennas and Propagation Society International Symposium,
San Antonio, TX, June 16–21, pp.
314
317
.
47.
Grimaldi
,
E. A.
,
Grimaccia
,
F.
,
Mussetta
,
M.
,
Pirinoli
,
P.
, and
Zich
,
R. F.
,
2004
, “
A New Hybrid Genetical-Swarm Algorithm for Electromagnetic Optimization
,”
Third International Conference on Computational Electromagnetics and Its Applications
(
ICCEA
), Beijing, China, Nov. 1–4, pp.
157
160
.
48.
Settles
,
M.
, and
Soule
,
T.
,
2005
, “
Breeding Swarms: A GA/PSO Hybrid
,”
Seventh Annual Conference on Genetic and Evolutionary Computation
(
GECCO
), Washington DC, June 25–29, pp.
161
168
.
49.
Wang
,
C.
,
Miller
,
C. J.
,
Nehrir
,
M. H.
,
Sheppard
,
J. W.
, and
McElmurry
,
S. P.
,
2015
, “
A Load Profile Management Integrated Power Dispatch Using a Newton-Like Particle Swarm Optimization Method
,”
Sustain. Comput. Inform. Syst.
,
8
, pp.
8
17
.
50.
Wang
,
C.
,
Nehrir
,
M. H.
,
Wang
,
L. Y.
,
Lin
,
F.
, and
Colson
,
C. M.
,
2011
, “
Hybrid Constraint-Handling Mechanism for Particle Swarm Optimization With Applications in Power Systems
,”
2011 International Conference on Genetic and Evolutionary Methods
, Las Vegas, NV, July 18–21, pp. 1–6.https://pdfs.semanticscholar.org/6a41/78d3753a555eee5f1455cb74fe06f707c4b3.pdf
51.
Christie
,
M. A.
, and
Blunt
,
M. J.
,
2001
, “
Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques
,”
SPE Reservoir Eval. Eng.
,
4
(
4
), pp.
308
317
.
You do not currently have access to this content.