Oil-in-water (O/W) emulsions are expected to be formed in the process of surfactant flooding for heavy oil reservoirs in order to strengthen the fluidity of heavy oil and enhance oil recovery. However, there is still a lack of detailed understanding of mechanisms and effects involved in the flow of O/W emulsions in porous media. In this study, a pore-scale transparent model packed with glass beads was first used to investigate the transport and retention mechanisms of in situ generated O/W emulsions. Then, a double-sandpack model with different permeabilities was used to further study the effect of in situ formed O/W emulsions on the improvement of sweep efficiency and oil recovery. The pore-scale visualization experiment presented an in situ emulsification process. The in situ formed O/W emulsions could absorb to the surface of pore-throats, and plug pore-throats through mechanisms of capture-plugging (by a single emulsion droplet) and superposition-plugging or annulus-plugging (by multiple emulsion droplets). The double-sandpack experiments proved that the in situ formed O/W emulsion droplets were beneficial for the mobility control in the high permeability sandpack and the oil recovery enhancement in the low permeability sandpack. The size distribution of the produced emulsions proved that larger pressures were capable to displace larger O/W emulsion droplets out of the pore-throat and reduce their retention volumes.

References

1.
Dusseault
,
M. B.
,
2002
, “Cold Heavy Oil Production With Sand in the Canadian Heavy Oil Industry,”
Alberta Ministry of Energy
,
Edmonton, AB, Canada
.
2.
Ezeuko
,
C. C.
,
Wang
,
J.
, and
Gates
,
I. D.
,
2013
, “
Investigation of Emulsion Flow in Steam-Assisted Gravity Drainage
,”
SPE J.
,
18
(
3
), pp.
440
447
.
3.
Liu
,
P. C.
,
Zheng
,
H. M.
, and
Wu
,
G. H.
,
2017
, “
Experimental Study and Application of Steam Flooding for Horizontal Well in Ultra-Heavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012908
.
4.
Ali
,
S. M. F.
,
1974
, “
Current Status of Steam Injection as a Heavy Oil Recovery Method
,”
J. Can. Pet. Technol.
,
13
(
1
), pp.
54
68
.
5.
Das
,
S.
,
2007
, “
Application of Thermal Processes in Heavy Oil Carbonate Reservoirs
,” SPE Middle East Oil and Gas Show and Conference
, Manama, Bahrain, Mar. 11–14, SPE Paper No.
SPE-105392-MS
.
6.
Naderi
,
K.
, and
Babadagli
,
T.
,
2015
, “
Solvent Selection Criteria and Optimal Application Conditions for Heavy-Oil/Bitumen Recovery at Elevated Temperatures: A Review and Comparative Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012904
.
7.
Johnson
,
D. O.
,
Sugianto
,
R.
,
Mock
,
P. H.
, and
Jones
,
C. H.
,
2004
, “
Identification of Steam-Breakthrough Intervals With DTS Technology
,”
SPE Prod. Facil.
,
19
(
1
), pp.
41
48
.
8.
Zhang
,
H. L.
,
Liu
,
H. Q.
,
Wang
,
H.
,
Wang
,
S. L.
, and
Bao
,
C. S.
,
2007
, “
Optimization Design of Profile Control Parameters for Steam Stimulation Wells
,”
Acta Pet. Sin.
,
28
(
2
), pp.
105
108
.
9.
Santos
,
M. D.
,
Neto
,
A. D.
, and
Mata
,
W.
,
2011
, “
New Antenna Modelling Using Wavelets for Heavy Oil Thermal Recovering Methods
,”
J. Pet. Sci. Eng.
,
76
(
1–2
), pp.
63
75
.
10.
Liu
,
Q.
,
Dong
,
M.
, and
Ma
,
S.
,
2006
, “
Alkaline/Surfactant Flood Potential in Western Canadian Heavy Oil Reservoirs
,”
SPE/DOE Symposium on Improved Oil Recovery
, Tulsa, OK, Apr. 22–26, SPE Paper No.
SPE-99791-MS
.
11.
Liu
,
Q.
,
Dong
,
M.
,
Yue
,
X.
, and
Hou
,
J.
,
2006
, “
Synergy of Alkali and Surfactant in Emulsification of Heavy Oil in Brine
,”
Colloids Surf. A
,
273
(
1–3
), pp.
219
228
.
12.
Li
,
X. J.
,
2008
, “
The Emulsification of Oil and Water in Porous Media and Its Effects on Enhanced Oil Recovery
,” Ph.D. thesis, China University of Petroleum, Beijing, China.
13.
Farias
,
M. R. D.
,
Carvalho
,
M.
,
Souza
,
A.
,
Hirasaki
,
G.
, and
Miller
,
C.
,
2012
, “
A Comparative Study of Emulsion Flooding and Other IOR Methods for Heavy Oil Fields
,”
SPE Latin American and Caribbean Petroleum Engineering Conference
, Mexico City, Mexico, Apr. 16–18, SPE Paper No.
SPE-152290-MS
.
14.
Yassin
,
M. R.
,
Ayatollahi
,
S.
,
Rostami
,
B.
,
Hassani
,
K.
, and
Taghikhani
,
V.
,
2015
, “
Micro-Emulsion Phase Behavior of a Cationic Surfactant at Intermediate Interfacial Tension in Sandstone and Carbonate Rocks
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012905
.
15.
Kokal
,
S. L.
,
2005
, “
Crude Oil Emulsions: A State-of-the-Art Review
,”
SPE Prod. Facil.
,
20
(
1
), pp.
5
13
.
16.
Fu
,
X. B.
,
Lane
,
R. H.
, and
Mamora
,
D. D.
,
2012
, “
Water-in-Oil Emulsions: Flow in Porous Media and EOR Potential
,”
SPE Canadian Unconventional Resources Conference
, Calgary, AB, Canada, Oct. 30–Nov. 1, SPE Paper No.
SPE-162633-MS
.
17.
Wu
,
J. L.
,
Liu
,
Y. T.
, and
Yang
,
H. N.
,
2012
, “
New Method of Productivity Equation for Multibranch Horizontal Well in Three-Dimensional Anisotropic Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032801
.
18.
McAuliffe
,
C. D.
,
1973
, “
Crude-Oil-Water Emulsions to Improve Fluid Flow in an Oil Reservoir
,”
J. Pet. Technol.
,
25
(
6
), pp.
721
726
.
19.
Romero
,
L.
,
Ziritt
,
J. L.
,
Marin
,
A.
,
Rojas
,
F.
,
Mogollon
,
J. L.
, and
Paz
,
E. M. F.
,
1996
, “
Plugging of High Permeability—Fractured Zones Using Emulsions
,”
SPE/DOE Improved Oil Recovery Symposium
, Tulsa, OK, Apr. 21–24, SPE Paper No.
SPE-35461-MS
.
20.
Khambharatana
,
F.
,
Thomas
,
S.
, and
Ali
,
S. M. F.
,
1998
, “
Macroemulsion Rheology and Drop Capture Mechanism During Flow in Porous Media
,”
SPE International Conference and Exhibition
, Beijing, China, Nov. 2–6, SPE Paper No.
SPE-48910-MS
.
21.
Cobos
,
S.
,
Carvalho
,
M. S.
, and
Alvarado
,
V.
,
2009
, “
Flow of Oil–Water Emulsions Through a Constricted Capillary
,”
Int. J. Multiphase Flow
,
35
(
6
), pp.
507
515
.
22.
Wang
,
J.
, and
Dong
,
M. Z.
,
2009
, “
Simulation of O/W Emulsion Flow in Alkaline/Surfactant Flood for Heavy Oil Recovery
,”
The Canadian International Petroleum Conference
, Calgary, AB, Canada, June 16–18, Paper No.
PETSOC-2009-066
.
23.
Guillen
,
V. R.
,
Carvalho
,
M. S.
, and
Alvarado
,
V.
,
2012
, “
Pore Scale and Macroscopic Displacement Mechanisms in Emulsion Flooding
,”
Transp. Porous Media
,
94
(
1
), pp.
197
206
.
24.
Kumar
,
R.
,
Dao
,
E.
, and
Mohanty
,
K. K.
,
2012
, “
Heavy-Oil Recovery by In-Situ Emulsion Formation
,”
SPE J.
,
17
(
2
), pp.
326
334
.
25.
Chen
,
L.
,
Zhang
,
G. C.
,
Ge
,
J. J.
,
Jiang
,
P.
,
Tang
,
J. Y.
, and
Liu
,
Y. L.
,
2013
, “
Research of the Heavy Oil Displacement Mechanism by Using Alkaline/Surfactant Flooding System
,”
Colloids Surf. A
,
434
(
19
), pp.
63
71
.
26.
Wang
,
F. Q.
,
Qu
,
Z. H.
, and
Kong
,
L. R.
,
2006
, “
Experimental Study on the Mechanism of Emulsion Flooding With Micromodels
,”
Pet. Explor. Develop.
,
33
(
2
), pp.
221
224
.
27.
Zeidani
,
K.
,
Polikar
,
M.
,
Huang
,
H.
, and
Boyd
,
J.
,
2007
, “
Heavy Oil-in-Water Emulsion as a Novel Sealant in the Near Well Bore Region
,”
Canadian International Petroleum Conference
, Calgary, AB, Canada, June 12–14, Paper No.
PETSOC-2007-183
.
28.
Wang
,
J.
,
Dong
,
M. Z.
, and
Arhuoma
,
M.
,
2010
, “
Experimental and Numerical Study of Improving Heavy Oil Recovery by Alkaline Flooding in Sandpacks
,”
J. Can. Pet. Technol.
,
49
(
3
), pp.
51
57
.
29.
Dong
,
M. Z.
,
Liu
,
Q.
, and
Li
,
A. F.
,
2012
, “
Displacement Mechanisms of Enhanced Heavy Oil Recovery by Alkaline Flooding in a Micromodel
,”
Particuology
,
10
(
3
), pp.
298
305
.
30.
Mohebbifar
,
M.
,
Ghazanfari
,
M. H.
, and
Vossoughi
,
M.
,
2015
, “
Experimental Investigation of Nano-Biomaterial Applications for Heavy Oil Recovery in Shaly Porous Models: A Pore-Level Study
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
014501
.
31.
Zhang
,
C. Y.
,
Oostrom
,
M.
,
Wietsma
,
T. W.
,
Grate
,
J. W.
, and
Warner
,
M. G.
,
2011
, “
Liquid CO2 Displacement of Water in a Dual-Permeability Pore Network Micromodel
,”
Environ. Sci. Technol.
,
45
(
17
), pp.
7581
7588
.
32.
Yao
,
C. J.
,
Lei
,
G. L.
,
Cathles
,
L. M.
, and
Steenhuis
,
T. S.
,
2014
, “
Pore-Scale Investigation of Micron-Size Polyacrylamide Elastic Microspheres (MPEMs) Transport and Retention in Saturated Porous Media
,”
Environ. Sci. Technol.
,
48
(
9
), pp.
5329
5335
.
33.
Lu
,
C.
,
Liu
,
H. Q.
, and
Zhao
,
W.
,
2017
, “
Visualized Study of Displacement Mechanisms by Injecting Viscosity Reducer and Non-Condensable Gas to Assist Steam Injection
,”
J. Energy Inst.,
90
(
1
), pp.
73
81
.
34.
Arhuoma
,
M.
,
Yang
,
D. Y.
,
Dong
,
M. Z.
,
Li
,
H.
, and
Idem
,
R.
,
2009
, “
Numerical Simulation of Displacement Mechanisms for Enhancing Heavy Oil Recovery During Alkaline Flooding
,”
Energy Fuels.
,
23
(
12
), pp.
5995
6002
.
35.
Arhuoma
,
M.
,
Dong
,
M. Z.
,
Yang
,
D. Y.
, and
Idem
,
R.
,
2009
, “
Determination of Water-in-Oil Emulsion Viscosity in Porous Media
,”
Ind. Eng. Chem. Res.
,
48
(
15
), pp.
7092
7102
.
36.
Wang
,
J.
,
Liu
,
H. Q.
,
Wang
,
Z. L.
, and
Hou
,
P. C.
,
2012
, “
Experimental Investigation on the Filtering Flow Law of Pre-Gelled Particle in Porous Media
,”
Transp. Porous Med.
,
94
(
1
), pp.
69
86
.
37.
Wang
,
J.
,
Liu
,
H. Q.
,
Pang
,
Z. X.
,
Liu
,
R. J.
, and
Li
,
M.
,
2011
, “
The Investigation of Threshold Pressure Gradient of Foam Flooding in Porous Media
,”
Pet. Sci. Technol.
,
29
(
23
), pp.
2460
2470
.
You do not currently have access to this content.