Numerical simulation and prediction studies on horizontal well performances in gas reservoir are foundation for optimizing horizontal well completion process. To gain more understanding on this theory, a steady-state reservoir model coupling with wellbore is developed in the fractured gas reservoirs with bottom-water and different fracture intensities to predict the horizontal well performances. Based on the equivalent flow assumption, the fractured porous medium is transformed into anisotropic porous medium so that the gas reservoir flow model can be developed as a new model that incorporates formation permeability heterogeneity, reservoir anisotropy, and gas reservoir damage. The wellbore flow model which considers pressure drops in the tubing is applied. We compare this paper model solutions for inflow profile along the well to the numerical solutions obtained from a commercial simulator (ECLIPSE 2011), and the result shows a very good agreement. Moreover, sensitive analysis, in terms of various linear densities of fractures, matrix permeability, fracture width, and wellbore pressure drop, is implemented. The results show that the new model developed in this study can obtain a more practical representation to simulate the horizontal wells performance in fractured gas reservoir with different fracture intensities and bottom-water, thus can be used to optimize the parameters in horizontal well completion of fractured gas reservoirs with different fracture intensities and bottom-water.

References

1.
Kuchuk
,
F. J.
,
Lenn
,
C.
,
Hook
,
P.
, and
Fjerstad
,
P.
,
1998
, “
Performance Evaluation of Horizontal Wells
,”
Abu Dhabi International Petroleum Exhibition and Conference
, Abu Dhabi, United Arab Emirates, Nov. 11–14, SPE Paper No.
SPE-49539-MS
.
2.
Sun
,
J.
,
Gamboa
,
E. S.
, and
Schechter
,
D.
,
2016
, “
An Integrated Workflow for Characterization and Simulation of Complex Fracture Networks Utilizing Microseismic and Horizontal Core Data
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
1347
1360
.
3.
Wang
,
L.
,
Wang
,
S.
,
Zhang
,
R.
,
Wang
,
C.
,
Xiong
,
Y.
,
Zheng
,
X.
,
Li
,
S.
, and
Jin
,
K.
,
2016
, “
Review of Multi-Scale and Multi-Physical Simulation Technologies for Shale and Tight Gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
37
, pp.
560
578
.
4.
Al Rbeawi
,
S. J. H.
, and
Tiab
,
D.
,
2011
, “
Effect of the Number and Length of Zonal Isolations on Pressure Behavior of Horizontal Wells
,”
SPE Production and Operations Symposium
, Oklahoma City, OK, Mar. 27–29, SPE Paper No.
SPE-142177-MS
.
5.
Liu
,
J. J.
,
Liu
,
X. G.
,
Ya-Reng
,
H. U.
, and
Zhang
,
S. Z.
,
2000
, “
The Equivalent Continuum Media Model of Fracture Sand Stone Reservoir
,”
J. Chongqing Univ.
,
23
(
s1
), pp.
158
160
.
6.
Xu
,
X.
,
Wei
,
G. Q.
, and
Yang
,
Z. M.
,
2013
, “
The Productivity Calculation Method of a Carbonate Reservoir
,”
Pet. Sci. Technol.
,
31
(
3
), pp.
301
309
.
7.
Kamal
,
M. M.
,
Buhidma
,
I. M.
,
Smith
,
S. A.
, and
Jones
,
W. R.
,
1993
, “
Pressure-Transient Analysis for a Well With Multiple Horizontal Sections
,”
SPE Annual Technical Conference and Exhibition
, Houston, TX, Oct. 3–6, SPE Paper No.
SPE-26444-MS
.
8.
Toufik
,
B.
,
Tiab
,
D.
, and
Jokhio
,
S.
,
2003
, “
Effect of Non-Uniform Skin on Finite Conductivity Horizontal Well
,”
SPE Production and Operations Symposium
, Oklahoma City, OK, Mar. 23–26, SPE Paper No.
SPE-80926-MS
.
9.
Yildiz
,
T.
,
2006
, “
The Impact of Nonuniform Formation Damage on Horizontal Well Performance
,”
SPE International Symposium and Exhibition on Formation Damage Control
, Lafayette, LA, Feb. 15–17, SPE Paper No.
SPE-98123-MS
.
10.
He
,
Y.
,
Cheng
,
S.
,
Qin
,
J.
,
Wang
,
Y.
,
Feng
,
N.
,
Hu
,
L.
,
Huang
,
Y.
,
Fang
,
R.
, and
Yu
,
H.
,
2017
, “
A Semianalytical Approach to Estimate the Locations of Malfunctioning Horizontal Wellbore Through Bottom-Hole Pressure and Its Application in Hudson Oilfield
,”
SPE Middle East Oil & Gas Show and Conference
, Manama, Kingdom of Bahrain, Mar. 6–9, SPE Paper No.
SPE-183796-MS
.
11.
He
,
Y.
,
Cheng
,
S.
,
Li
,
S.
,
Huang
,
Y.
,
Qin
,
J.
,
Hu
,
L.
, and
Yu
,
H.
,
2017
, “
A Semianalytical Methodology to Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir
,”
SPE J.
,
22
(
3
), pp.
924
939
.
12.
Dikken
,
B. J.
,
1990
, “
Pressure Drop in Horizontal Wells and Its Effect on Production Performance
,”
J. Pet. Technol.
,
42
(
11
), pp.
1426
1433
.
13.
Sarica
,
C.
,
Haciislamoglu
,
M.
,
Raghavan
,
R.
, and
Brill
,
J. P.
,
1994
, “
Influence of Wellbore Hydraulics on Pressure Behavior and Productivity of Horizontal Gas Wells
,”
SPE Annual Technical Conference and Exhibition
, New Orleans, LA, Sep. 25–28, SPE Paper No.
SPE-28486-MS
.
14.
Zeng
,
J.
,
Wang
,
X.
,
Guo
,
J.
, and
Zeng
,
F.
,
2017
, “
Composite Linear Flow Model for Multi-Fractured Horizontal Wells in Heterogeneous Shale Reservoir
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
527
548
.
15.
Penmatcha
,
V. R.
, and
Aziz
,
K.
,
1998
, “
A Comprehensive Reservoir/Wellbore Model for Horizontal Wells
,”
SPE India Oil and Gas Conference and Exhibition
, New Delhi, India, Feb. 17–19, SPE Paper No.
SPE-39521-MS
.
16.
Ozkan
,
E.
,
Sarica
,
C.
, and
Haci
,
M.
,
1999
, “
Influence of Pressure Drop along the Wellbore on Horizontal-Well Productivity
,”
SPE J.
,
4
(
3
), pp.
288
301
.
17.
Vicente
,
R.
,
Sarica
,
C.
, and
Ertekin
,
T.
,
2004
, “
A Numerical Model Coupling Reservoir and Horizontal Well Flow Dynamics-Applications in Well Completions, and Production Logging
,”
ASME J. Energy Resour. Technol.
,
126
(
3
), pp.
169
176
.
18.
Ouyang
,
L.-B.
, and
Huang
,
W. S. B.
,
2005
, “
A Comprehensive Evaluation of Well-Completion Impacts on the Performance of Horizontal and Multilateral Wells
,”
SPE Annual Technical Conference and Exhibition
, Dallas, TX, Oct. 9–12, SPE Paper No.
SPE-96530-MS
.
19.
Johansen
,
T. E.
, and
Khoriakov
,
V.
,
2007
, “
Iterative Techniques in Modeling of Multi-Phase Flow in Advanced Wells and the Near Well Region
,”
J. Pet. Sci. Eng.
,
58
(
1–2
), pp.
49
67
.
20.
Lian
,
P.
,
Cheng
,
L.
,
Tan
,
X.
, and
Li
,
L.
,
2012
, “
A Model for Coupling Reservoir Inflow and Wellbore Flow in Fishbone Wells
,”
Pet. Sci.
,
9
(
3
), pp.
336
342
.
21.
Xianchao
,
C.
,
Qihong
,
F.
, and
Qiang
,
W.
,
2014
, “
Performance Prediction of Gel Water Shutoff in Horizontal Wells Using a Newly Coupled Reservoir–Wellbore Model
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022903
.
22.
Abdulwahid
,
M. A.
,
Niranjan Kumar
,
I. N.
, and
Dakhil
,
S. F.
,
2014
, “
Influence of Radial Flux Inflow Profile on Pressure Drop of Perforated Horizontal Wellbore
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042907
.
23.
de Souza
,
G.
, and
Pires
,
A. P.
,
2014
, “
Well-Reservoir Coupling on the Numerical Simulation of Horizontal Wells in Gas Reservoirs
,”
SPE Latin America and Caribbean Petroleum Engineering Conference
, Maracaibo, Venezuela, May 21–23, SPE Paper No.
SPE-169386-MS
.
24.
Luo
,
W.
,
Li
,
H.-T.
,
Wang
,
Y.-Q.
, and
Wang
,
J.-C.
,
2015
, “
A New Semi-Analytical Model for Predicting the Performance of Horizontal Wells Completed by Inflow Control Devices in Bottom-Water Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
27
(
Pt. 3
), pp.
1328
1339
.
25.
Adesina
,
F. A.
,
Churchill
,
A.
, and
Olugbenga
,
F.
,
2011
, “
Modeling Productivity Index for Long Horizontal Well
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
033101
.
26.
Tang
,
H.
,
Hasan
,
A. R.
, and
Killough
,
J.
,
2017
, “
A Fully-Coupled Wellbore-Reservoir Model for Transient Liquid Loading in Horizontal Gas Wells
,”
SPE Annual Technical Conference and Exhibition
, San Antonio, TX, Oct. 9–11, SPE Paper No.
SPE-187354-MS
.
27.
Tang
,
H.
,
Chai
,
Z.
,
Yan
,
B.
, and
Killough
,
J.
,
2017
, “
Application of Multi-Segment Well Modeling to Simulate Well Interference
,”
Unconventional Resources Technology Conference
, Austin, TX, July 24–26, Paper No.
URTEC-2668100-MS
.
28.
Qin
,
J.
,
Cheng
,
S.
,
He
,
Y.
,
Luo
,
L.
,
Wang
,
Y.
,
Feng
,
N.
,
Zhang
,
T.
,
Qin
,
G.
, and
Yu
,
H.
,
2017
, “
Estimation of Non-Uniform Production Rate Distribution of Multi-Fractured Horizontal Well Through Pressure Transient Analysis: Model and Case Study
,”
SPE Annual Technical Conference and Exhibition
, San Antonio, TX, Oct. 9–11, SPE Paper No.
SPE-187412-MS
.
29.
Li
,
H.
,
Tan
,
Y.
,
Jiang
,
B.
,
Wang
,
Y.
, and
Zhang
,
N.
,
2018
, “
A Semi-Analytical Model for Predicting Inflow Profile of Horizontal Wells in Bottom-Water Gas Reservoir
,”
J. Pet. Sci. Eng.
,
160
, pp.
351
362
.
30.
Ozkan
,
E.
,
Sarica
,
C.
,
Haciislamoglu
,
M.
, and
Raghavan
,
R.
,
1993
, “
The Influence of Pressure Drop along the Wellbore on Horizontal Well Productivity
,” Society of Petroleum Engineers, SPE Paper No.
SPE-25502-MS
.https://www.onepetro.org/general/SPE-25502-MS
31.
Yildiz
,
T.
, and
Ozkan
,
E.
,
1994
, “
Transient Pressure Behaviour of Selectively Completed Horizontal Wells
,”
SPE Annual Technical Conference and Exhibition
, New Orleans, LA, Sep. 25–28, SPE Paper No.
SPE-28388-MS
.
32.
Obinna
,
E. D.
, and
Alpheus
,
I. O.
,
2013
, “
Pressure Testing of Segmented Horizontal Wells in Anisotropic Composite Reservoirs
,”
SPE Nigeria Annual International Conference and Exhibition
, Lagos, Nigeria, Aug. 5–7, SPE Paper No.
SPE-167606-MS
.
33.
Valko
,
P. P.
, and
Amini
,
S.
,
2007
, “
The Method of Distributed Volumetric Sources for Calculating the Transient and Pseudosteady-State Productivity of Complex Well-Fracture Configurations
,”
SPE Hydraulic Fracturing Technology Conference
, College Station, TX, Jan. 29–31, SPE Paper No.
SPE-106279-MS
.
34.
Li
,
H.
,
Wang
,
J.
,
Wang
,
Y.
,
Jiang
,
B.
, and
Luo
,
W.
,
2014
, “
Generalized Productivity Model for Designing Hydraulic Fractures in Horizontal Wells Located in Naturally Fissured Low-Permeability Gas Reservoirs
,”
Chem. Technol. Fuels Oils
,
50
(
4
), pp.
299
314
.
35.
Jiang
,
B.
,
Li
,
H.
,
Zhang
,
Y.
,
Wang
,
Y.
,
Wang
,
J.
, and
Patil
,
S.
,
2016
, “
Multiple Fracturing Parameters Optimization for Horizontal Gas Well Using a Novel Hybrid Method
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
604
615
.
36.
Cui
,
K.
,
Qian
,
Y.
,
Jeon
,
I.
,
Anisimonv
,
A.
,
Matsuo
,
Y.
,
Kauppinen
,
I. E.
, and
Maruyama
,
S.
,
2017
, “
Scalable and Solid-State Redox Functionalization of Transparent Single-Walled Carbon Nanotube Films for Highly Efficient and Stable Solar Cells
,”
Adv. Energy Mater.
,
7
(
18
), p.
1700449
.
37.
Rui
,
Z.
,
Li
,
C.
,
Peng
,
F.
,
Ling
,
K.
,
Chen
,
G.
,
Zhou
,
X.
, and
Chang
,
H.
,
2017
, “
Development of Industry Performance Metrics for Offshore Oil and Gas Project
,”
J. Nat. Gas Sci. Eng.
,
39
, pp.
44
53
.
38.
Cui
,
G.
,
Ren
,
S.
,
Ezekiel
,
J.
,
Zhang
,
L.
, and
Wang
,
H.
,
2017
, “
The Influence of Complicated Fluid-Rock Interactions on the Geothermal Exploitation in the CO2 Plume Geothermal System
,”
Appl. Energy
(in press).
39.
Wu
,
K.
,
Chen
,
Z.
,
Li
,
X.
,
Xu
,
J.
,
Li
,
J.
,
Wang
,
K.
,
Wang
,
H.
,
Wang
,
S.
, and
Dong
,
X.
,
2017
, “
Flow Behavior of Gas Confined in Nanoporous Shale at High Pressure: Real Gas Effect
,”
Fuel
,
205
, pp.
173
183
.
40.
Wu
,
K.
,
Li
,
X.
,
Guo
,
C.
,
Wang
,
C.
, and
Chen
,
Z.
,
2016
, “
A Unified Model for Gas Transfer in Nanopores of Shale-Gas Reservoirs: Coupling Pore Diffusion and Surface Diffusion
,”
SPE J.
,
21
(
5
), pp.
1583
1611
.
41.
Zhou
,
X.
,
Zeng
,
F.
,
Zhang
,
L.
, and
Wang
,
H.
,
2016
, “
Foamy Oil Flow in Heavy Oil–Solvent Systems Tested by Pressure Depletion in a Sandpack
,”
Fuel
,
171
, pp.
210
223
.
42.
Zhou
,
X.
,
Zeng
,
F.
, and
Zhang
,
L.
,
2016
, “
Improving Steam-Assisted Gravity Drainage Performance in Oil Sands With a Top Water Zone Using Polymer Injection and the Fishbone Well Pattern
,”
Fuel
,
215
, pp.
813
824
.
43.
Rui
,
Z.
,
Wang
,
X.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213
, pp.
76
91
.
44.
Zhou
,
X.
,
Yuan
,
Q.
,
Peng
,
X.
,
Zeng
,
F.
, and
Zhang
,
L.
,
2017
, “
A Critical Review of the CO2 Huff ‘n’ Puff Process for Enhanced Heavy Oil Recovery
,”
Fuel
,
184
, pp.
449
465
.
45.
Zhou
,
X.
,
Yuan
,
Q.
,
Zeng
,
F.
,
Zhang
,
L.
, and
Jiang
,
S.
,
2017
, “
Experimental Study on Foamy Oil Behavior Using a Heavy Oil–Methane System in the Bulk Phase
,”
J. Pet. Sci. Eng.
,
158
, pp.
309
321
.
46.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Lu
,
J.
,
Chen
,
G.
,
Ling
,
K.
, and
Patil
,
S.
,
2018
, “
A Quantitative Framework for Evaluating Unconventional Well Development
,”
J. Pet. Sci. Eng.
,
166
, pp.
900
905
.
47.
Rui
,
Z.
,
Han
,
Q.
,
Zhang
,
H.
,
Wang
,
S.
,
Pu
,
H.
, and
Ling
,
K.
,
2017
, “
A New Model to Evaluate Two Leak Points in a Gas Pipeline
,”
J. Nat. Gas Sci. Eng.
,
46
, pp.
491
497
.
48.
Rui
,
Z.
,
Peng
,
F.
,
Ling
,
K.
,
Chang
,
H.
,
Chen
,
G.
, and
Zhou
,
X.
,
2017
, “
Investigation Into the Performance of Oil and Gas Projects
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
12
20
.
49.
Rui
,
Z.
,
Lu
,
J.
,
Zhang
,
Z.
,
Guo
,
R.
,
Ling
,
K.
,
Zhang
,
R.
, and
Patil
,
S.
,
2017
, “
A Quantitative Oil and Gas Reservoir Evaluation System for Development
,”
J. Nat. Gas Sci. Eng.
,
42
, pp.
31
39
.
50.
Yuan
,
B.
,
Su
,
Y.
,
Moghanloo
,
R. G.
,
Rui
,
Z.
,
Wang
,
W.
, and
Shang
,
Y.
,
2015
, “
A New Analytical Multi-Linear Solution for Gas Flow Toward Fractured Horizontal Wells With Different Fracture Intensity
,”
J. Nat. Gas Sci. Eng.
,
23
, pp.
227
238
.
51.
Guo
,
T.
,
Li
,
Y.
,
Ding
,
Y.
,
Qu
,
Z.
,
Gai
,
N.
, and
Rui
,
Z.
,
2017
, “
Evaluation of Acid Fracturing Treatments in Shale Formation
,”
Energy Fuels
,
31
(
10
), pp.
10479
10489
.
52.
Rui
,
Z.
,
Guo
,
T.
,
Feng
,
Q.
,
Qu
,
Z.
,
Qi
,
N.
, and
Gong
,
F.
,
2018
, “
Influence of Gravel on the Propagation Pattern of Hydraulic Fracture in the Glutenite Reservoir
,”
J. Pet. Sci. Eng.
,
165
, pp.
627
639
.
53.
Warren
,
J. E.
, and
Root
,
P. J.
,
1963
, “
The Behavior of Naturally Fractured Reservoirs
,”
Soc. Pet. Eng. J.
,
3
(
3
), pp.
245
255
.
54.
Guo
,
J.
,
Luo
,
B.
,
Lu
,
C.
,
Lai
,
J.
, and
Ren
,
J.
,
2017
, “
Numerical Investigation of Hydraulic Fracture Propagation in a Layered Reservoir Using the Cohesive Zone Method
,”
Eng. Fract. Mech.
,
186
, pp.
195
207
.
55.
He
,
Y.
,
Cheng
,
S.
,
Rui
,
Z.
,
Qin
,
J.
,
Fu
,
L.
,
Shi
,
J.
,
Wang
,
Y.
,
Li
,
D.
,
Patil
,
S.
,
Yu
,
H.
, and
Lu
,
J.
,
2018
, “
An Improved Rate-Transient Analysis Model of Multi-Fractured Horizontal Wells With Non-Uniform Hydraulic Fracture Properties
,”
Energies
,
11
(
2
), p.
393
.
56.
Wang
,
W.
,
Shahvali
,
M.
, and
Su
,
Y.
,
2016
, “
Analytical Solutions for a Quad-Linear Flow Model Derived for Multistage Fractured Horizontal Wells in Tight Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
0129051
.
57.
Wolfsteiner
,
C.
,
Durlofsky
,
L. J.
, and
Khalid
,
A.
,
2000
, “
Approximate Model for Productivity of Nonconventional Wells in Heterogeneous Reservoirs
,”
SPE J.
,
5
(
2
), pp.
218
226
.
58.
Hawkins
,
M. F.
,
1956
, “
A Note on the Skin Effect
,”
J. Pet. Technol.
,
8
(
12
), pp.
65
66
.
59.
Tabatabaei
,
M.
, and
Ghalambor
,
A.
,
2011
, “
A New Method to Predict Performance of Horizontal and Multilateral Wells
,”
SPE Prod. Oper.
,
26
(
1
), pp.
75
87
.
60.
Huang
,
S.
, and
Cheng
,
L.
,
2005
, “
The Productivity Model of Horizontal Well Considering the Skin Variatation in Production Section
,”
Drill. Prod. Technol.
,
28
(
5
), pp.
31
34
(in Chinese).
61.
Sun
,
H. E.
, and
Li
,
X. P.
,
2013
, “
Study on Horizontal Wellbore Pressure of Low Permeability Reservoirs
,”
Reservoir Eval. Dev.
,
3
(
2
), pp.
38
40
(in Chinese).
You do not currently have access to this content.