The injection of CO2 has been in global use for enhanced oil recovery (EOR) as it can improve oil production in mature fields. It also has environmental benefits for reducing greenhouse carbon by permanently sequestrating CO2 (carbon capture and storage (CCS)) in reservoirs. As a part of numerical studies, this work proposed a novel application of an artificial neural network (ANN) to forecast the performance of a water-alternating-CO2 process and effectively manage the injected CO2 in a combined CCS–EOR project. Three targets including oil recovery, net CO2 storage, and cumulative gaseous CO2 production were quantitatively simulated by three separate ANN models for a series of injection frames of 5, 15, 25, and 35 cycles. The concurrent estimations of a sequence of outputs have shown a relevant application in scheduling the injection process based on the progressive profile of the targets. For a specific surface design, an increment of 5.8% oil recovery and 4% net CO2 storage was achieved from 25 cycles to 35 cycles, suggesting ending the injection at 25 cycles. Using the models, distinct optimizations were also computed for oil recovery and net CO2 sequestration in various reservoir conditions. The results expressed a maximum oil recovery from 22% to 30% oil in place (OIP) and around 21,000–29,000 tons of CO2 trapped underground after 35 cycles if the injection began at 60% water saturation. The new approach presented in this study of applying an ANN is obviously effective in forecasting and managing the entire CO2 injection process instead of a single output as presented in previous studies.

References

1.
Perera
,
M. S. A.
,
Gamage
,
R. P.
,
Rathaweera
,
T. D.
,
Ranathunga
,
A. S.
,
Koay
,
A.
, and
Choi
,
X.
,
2016
, “
A Review of CO2-Enhaced Oil Recovery With a Simulated Sensitivity Analysis
,”
Energies
,
9
(7), p.
481
.
2.
Sedaghat
,
M. H.
,
Ghazanfari
,
M. H.
,
Parvazdavani
,
M.
, and
Morshedi
,
S.
,
2013
, “
Experimental Investigation of Microscopic/Macroscopic Efficiency of Polymer Flooding in Fractured Heavy Oil Five-Spot Systems
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032901
.
3.
Kamath
,
K. I.
, and
Yan
,
S. J.
,
1981
, “
Enhanced Oil Recovery by Flooding With Dilute Aqueous Chemical Solutions
,”
ASME J. Energy Resour. Technol.
,
103
(
4
), pp.
285
290
.
4.
Si
,
L. V.
, and
Chon
,
B. H.
,
2016
, “
Artificial Neural Network Model for Alkali-Surfactant-Polymer Flooding in Viscous Oil Reservoirs: Generation and Application
,”
Energies
,
9
(
12
), p.
1081
.
5.
Zaluski
,
W.
,
El-Kaseeh
,
G.
,
Lee
,
S. Y.
,
Piercey
,
M.
, and
Duguid
,
A.
,
2016
, “
Monitoring Technology Ranking Methodology for CO2-EOR Sites Using the Weyburn-Midale Field as a Case Study
,”
Int. J. Greenhouse Gas Control
,
54
(Part 2), pp.
466
478
.
6.
Al-Ameri
,
W. A.
,
Abdulraheem
,
A.
, and
Mahmoud
,
M.
,
2016
, “
Long-Term Effects of CO2 Sequestration on Rock Mechanical Properties
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012201
.
7.
Zhou
,
D.
, and
Yang
,
D.
,
2017
, “
Scaling Criteria for Waterflooding and Immiscible CO2 Flooding in Heavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022909
.
8.
Nobakht
,
M.
,
Moghadam
,
S.
, and
Gu
,
Y.
,
2007
, “
Effects of Viscous and Capillary Forces on CO2 Enhanced Oil Recovery Under Reservoir Conditions
,”
Energy Fuel
,
21
(6), pp.
3469
3476
.
9.
Zanganeh
,
P.
,
Ayatollahi
,
S.
,
Alamdari
,
A.
,
Zolghadr
,
A.
,
Dashti
,
H.
, and
Kord
,
S.
,
2012
, “
Asphaltene Deposition During CO2 Injection and Pressure Depletion: A Visual Study
,”
Energy Fuel
,
26
(2), pp.
1412
1419
.
10.
Ping
,
H. L.
,
Ping
,
S. P.
,
Wei
,
L. X.
,
Chao
,
G. Q.
,
Sheng
,
W. C.
, and
Fangfang
,
L.
,
2015
, “
Study on CO2 EOR and Its Geological Sequestration Potential in Oil Field around Yulin City
,”
J. Pet. Sci. Eng.
,
134
, pp.
199
204
.
11.
Ampomah
,
W.
,
Balch
,
R. S.
,
Grigg
,
R. B.
,
Will
,
R.
,
Dai
,
Z.
, and
White
,
M. D.
,
2016
, “
Farnsworth Field CO2-EOR Project: Performance Case History
,” SPE Improved Oil Recovery Conference, Tulsa, OK, Apr. 11–13,
SPE
Paper No. 179528-MS.
12.
Hoffman, B. T., and Shoaib, S.,
2013
, “
CO2 Flooding to Increase Recovery for Unconventional Liquids-Rich Reservoirs
,”
ASME J. Energy Resour. Technol.
,
136
(2), p. 022801.
13.
Ren
,
B.
,
Ren
,
S.
,
Zhang
,
L.
,
Chen
,
G.
, and
Zhang
,
H.
,
2016
, “
Monitoring on CO2 Migration in a Tight Oil Reservoir During CCS-EOR in Jilin Oilfield China
,”
Energy
,
98
, pp.
108
121
.
14.
Raza
,
A.
,
Rezaee
,
R.
,
Gholami
,
R.
,
Bing
,
C. H.
,
Nagarajan
,
R.
, and
Hamid
,
M. A.
,
2016
, “
A Screening Criterion for Selection of Suitable CO2 Storage Sites
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
317
327
.
15.
Ahmadi
,
M. A.
,
Pouladi
,
B.
, and
Barghi
,
T.
,
2016
, “
Numerical Modeling of CO2 Injection Scenarios in Petroleum Reservoirs: Application to CO2 Sequestration and EOR
,”
J. Nat. Gas Sci. Eng.
,
30
, pp.
38
49
.
16.
He
,
L.
,
Shen
,
P.
,
Liao
,
X.
,
Li
,
F.
,
Gao
,
Q.
, and
Wang
,
Z.
,
2016
, “
Potential Evaluation of CO2 EOR and Sequestration in Yanchang Oilfield
,”
J. Energy Inst.
,
89
(2), pp.
215
221
.
17.
Teklu
,
T. W.
,
Alameri
,
W.
,
Graves
,
R.
, and
Kazemi
,
H.
,
2016
, “
Low-Salinity Water-Alternating-CO2 EOR
,”
J. Pet. Sci. Eng.
,
142
, pp.
101
118
.
18.
Yao
,
Y.
,
Wang
,
Z.
,
Li
,
G.
,
Wu
,
H.
, and
Wang
,
J.
,
2016
, “
Potential of Carbon Dioxide Miscible Injections Into the H-26 Reservoir
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
1085
1095
.
19.
Song
,
Z.
,
Li
,
Z.
,
Wei
,
Z.
,
Lai
,
F.
, and
Bai
,
B.
,
2014
, “
Sensitivity Analysis of Water-Alternating-CO2 Flooding for Enhanced Oil Recovery in High Water Cut Oil Reservoirs
,”
Comput. Fluids
,
99
, pp.
93
103
.
20.
Wei
,
N.
,
Li
,
X.
,
Dahowski
,
R. T.
, and
Davidson
,
C. L.
,
2015
, “
Economic Evaluation on CO2-EOR of Onshore Oil Fields in China
,”
Int. J. Greenhouse Gas Control
,
37
, pp.
170
181
.
21.
Ahmadi
,
M. A.
,
Ebadi
,
M.
, and
Hosseine
,
S. M.
,
2014
, “
Prediction Breakthrough Time of Water Coning in the Fractured Reservoirs by Implementing Low Parameter Support Vector Machine Approach
,”
Fuel
,
117
(Part A), pp.
579
589
.
22.
Ahmadi
,
M. A.
, and
Ebadi
,
M.
,
2014
, “
Evolving Smart Approach for Determination Dew Point Pressure Through Condensate Gas Reservoirs
,”
Fuel
,
117
(Part B), pp.
1074
1084
.
23.
Ahmadi
,
M. A.
,
Soleimani
,
R.
,
Lee
,
M.
,
Kashiwao
,
T.
, and
Bahadori
,
A.
,
2015
, “
Determination of Oil Well Production Performance Using Artificial Neural Network (ANN) Linked to the Particle Swarm Optimization (PSO) Tool
,”
Petroleum
,
1
(
2
), pp.
118
132
.
24.
Ettehadtavakkol
,
A.
,
Lake
,
L. W.
, and
Bryant
,
S. L.
,
2014
, “
CO2-EOR and Storage Design Optimization
,”
Int. J. Greenhouse Gas Control
,
25
, pp.
79
92
.
25.
Ahmadi
,
M. A.
,
2012
, “
Neural Network Based Unified Particle Swarm Optimization for Prediction of Asphaltene Precipitation
,”
Fluid Phase Equilib.
,
314
, pp.
46
51
.
26.
Ahmadi
,
M. A.
,
Zahedzadeh
,
M.
,
Shadizadeh
,
S. R.
, and
Abbassi
,
R.
,
2015
, “
Connectionist Model for Predicting Minimum Gas Miscibility Pressure: Application to Gas Injection Process
,”
Fuel
,
148
, pp.
202
211
.
27.
Pan
,
F.
,
McPherson
,
B. J.
,
Dai
,
Z.
,
Lee
,
S. Y.
,
Ampomah
,
W.
,
Viswanathan
,
H.
, and
Esser
,
R.
,
2016
, “
Uncertainty Analysis of Carbon Sequestration in an Active CO2–EOR Field
,”
Int. J. Greenhouse Gas Control
,
51
, pp.
18
28
.
28.
Dai
,
Z.
,
Viswanathan
,
H.
,
Middleton
,
R.
,
Pan
,
F.
,
Ampomah
,
W.
,
Yang
,
C.
,
Jia
,
W.
,
Lee
,
S. Y.
,
Balch
,
R.
,
Grigg
,
R.
, and
White
,
M.
,
2016
, “
CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites
,”
Environ. Sci. Technol.
,
50
(14), pp.
7546
7554
.
29.
Eshraghi
,
S. E.
,
Rasaei
,
M. R.
, and
Zendehboudi
,
S. Z.
,
2016
, “
Optimization of Miscible CO2 EOR and Storage Using Heuristic Methods Combined With Capacitance/Resistance and Gentil Fractional Flow Models
,”
J. Nat. Gas Sci. Eng.
,
32
, pp.
304
318
.
30.
Ahmadi
,
M. A.
,
2015
, “
Connectionist Approach Estimates Gas–Oil Relative Permeability in Petroleum Reservoirs: Application to Reservoir Simulation
,”
Fuel
,
140
, pp.
429
439
.
31.
Ampomah
,
W.
,
Balch
,
R.
,
Cather
,
M.
,
Coss
,
D. R.
,
Dai
,
Z.
,
Heath
,
J.
,
Dewers
,
T.
, and
Mozley
,
P.
,
2016
, “
Evaluation of CO2 Storage Mechanisms in CO2 Enhanced Oil Recovery Sites: Application to Morrow Sandstone Reservoir
,”
Energy Fuel
,
30
(10), pp.
8545
8555
.
32.
Li
,
L.
,
Khorsandi
,
S.
,
Johns
,
R. T.
, and
Dilmore
,
R. M.
,
2015
, “
CO2 Enhanced Oil Recovery and Storage Using a Gravity–Enhanced Process
,”
Int. J. Greenhouse Gas Control
,
42
, pp.
502
515
.
33.
Moortgat
,
J.
,
Firoozabadi
,
A.
,
Li
,
Z.
, and
Esposito
,
R.
,
2010
, “
A Detailed Experimental and Numerical Study of Gravitational Effects on CO2 Enhanced Recovery
,”
SPE Annual Technical Conference and Exhibition
, Florence, Italy, Sept. 19–22,
SPE
Paper No. SPE-135563-MS.https://www.onepetro.org/conference-paper/SPE-135563-MS
34.
Computer Modelling Group Ltd
.,
2016
, “
WINPROP User Guide: Phase–Behaviour & Fluid Property Program
,” Computer Modelling Group Ltd., Calgary, AB, Canada.
35.
Orr
,
F. M.
,
Dindoruk
,
B.
, and
Johns
,
R. T.
,
1995
, “
Theory of Multicomponent Gas/Oil Displacements
,”
Ind. Eng. Chem. Res.
,
34
(8), pp.
2661
2669
.
36.
Orr
,
F. M.
, and
Silva
,
M. K.
,
1987
, “
Effect of Oil Composition on Minimum Miscibility Pressure—Part 2: Correlation
,”
SPE J.
,
2
(
4
), pp.
479
491
.
37.
Ahmadi
,
K.
, and
Johns
,
R. T.
,
2011
, “
Multiple–Mixing–Cell Method for MMP Calculations
,”
SPE J.
,
16
(
4
), pp.
733
742
.
38.
Haghtalab
,
A.
, and
Moghaddam
,
A. K.
,
2016
, “
Prediction of Minimum Miscibility Pressure Using the UNIFAC Group Contribution Activity Coefficient Model and the LCVM Mixing Rule
,”
Ind. Eng. Chem. Res.
,
55
(10), pp.
2840
2851
.
39.
Damico
,
J. R.
,
Monson
,
C. C.
,
Frailey
,
S.
,
Lasemi
,
Y.
,
Webb
,
N. D.
,
Grigsby
,
N.
,
Yang
,
F.
, and
Berger
,
P.
,
2014
, “
Strategies for Advancing CO2 EOR in the Illinois Basin, USA
,”
Energy Procedia
,
63
, pp.
7694
7708
.
40.
Dai
,
Z.
,
Middleton
,
R.
,
Viswanathan
,
H.
,
Rahn
,
J. F.
,
Bauman
,
J.
,
Pawar
,
R.
,
Lee
,
S. Y.
, and
McPherson
,
B.
,
2014
, “
An Integrated Framework for Optimizing CO2 Sequestration and Enhanced Oil Recovery
,”
Environ. Sci. Technol. Lett.
,
1
(1), pp.
49
54
.
41.
Holt
,
T.
,
Lindeberg
,
E.
, and
Berg
,
D. W.
,
2009
, “
EOR and CO2 Disposal—Economic and Capacity Potential in the North Sea
,”
Energy Procedia
,
1
(1), pp.
4159
4166
.
42.
Zhao
,
X.
, and
Liao
,
X.
,
2012
, “
Evaluation Method of CO2 Sequestration and Enhanced Oil Recovery in an Oil Reservoir, as Applied to the Changqing Oil Fields, China
,”
Energy Fuel
,
26
(8), pp.
5350
5354
.
43.
Attavitkamthorn
,
V.
,
Vilcaez
,
J.
, and
Sato
,
K.
,
2013
, “
Integrated CCS Aspect Into CO2 EOR Project Under Wide Range of Reservoir Properties and Operating Conditions
,”
Energy Procedia
,
37
, pp.
6901
6908
.
44.
Gong
,
Y.
, and
Gu
,
Y.
,
2015
, “
Miscible CO2 Simultaneous Water–and–Gas (CO2–SWAG) Injection in the Bakken Formation
,”
Energy Fuel
,
29
(9), pp.
5655
5665
.
45.
Mishra
,
S.
,
Hawkins
,
J.
,
Barclay
,
T. H.
, and
Harley
,
M.
,
2014
, “
Estimating CO2–EOR Potential and Co-Sequestration Capacity in Ohio's Depleted Oil Fields
,”
Energy Procedia
,
63
, pp.
7785
7795
.
You do not currently have access to this content.