A large potential is contributed to the energetic utilization of biomass, whereby thermochemical gasification seems to be especially interesting. In order to contribute to a better understanding of the thermochemical conversion process in the gasifier, mathematical models are used. An intensive effort is made in development of mathematical models describing the gasification process and a large number of models, considerably differing in their degree of simplification, and their applications are reported in literature. In the present article, a brief review of models applied, mainly focused on equilibrium models, is provided and a robust and flexible modified stoichiometric equilibrium model, for modeling a novel gasifier, is presented.
Issue Section:
Energy from Biomass
References
1.
Puig-Arnavat
, M.
, Bruno
, J. C.
, and Coronas
, A.
, 2010
, “Review and Analysis of Biomass Gasification Models
,” Renewable Sustainable Energy Rev.
, 14
(9
), pp. 2841
–2851
.2.
Gómez-Barea
, A.
, and Leckner
, B.
, 2010
, “Modeling of Biomass Gasification in Fluidized Bed
,” Prog. Energy Combust. Sci.
, 36
(4
), pp. 444
–509
.3.
Baruah
, D.
, and Baruah
, D.
, 2014
, “Modeling of Biomass Gasification: A Review
,” Renewable Sustainable Energy Rev.
, 39
, pp. 806
–815
.4.
Patra
, T. K.
, and Sheth
, P. N.
, 2015
, “Biomass Gasification Models for Downdraft Gasifier: A State-of-the-Art Review
,” Renewable Sustainable Energy Rev.
, 50
, pp. 583
–593
.5.
Villetta
, M. L.
, Costa
, M.
, and Massarotti
, N.
, 2017
, “Modelling Approaches to Biomass Gasification: A Review With Emphasis on the Stoichiometric Method
,” Renewable Sustainable Energy Rev.
, 74
, pp. 71
–88
.6.
Smith
, J. M.
, Van Ness
, H. C.
, and Abbott
, M. M.
, 2005
, Introduction to Chemical Engineering Thermodynamics
, 7th ed., McGraw-Hill
, New York.7.
Baehr
, H. D.
, and Kabelac
, S.
, 2006
, Thermodynamik - Grundlagen Und Technische Anwendungen
, 13th ed., Springer-Verlag
, Berlin
.8.
Florin
, N. H.
, and Harris
, A. T.
, 2007
, “Hydrogen Production From Biomass Coupled With Carbon Dioxide Capture: The Implications of Thermodynamic Equilibrium
,” Int. J. Hydrogen Energy
, 32
(17
), pp. 4119
–4134
.9.
Prins
, M. J.
, Ptasinski
, K. J.
, and Janssen
, F. J. J. G.
, 2003
, “Thermodynamics of Gas-Char Reactions: First and Second Law Analysis
,” Chem. Eng. Sci.
, 58
(3–6
), pp. 1003
–1011
.10.
Mirmoshtaghi
, G.
, Li
, H.
, Thorin
, E.
, and Dahlquist
, E.
, 2016
, “Evaluation of Different Biomass Gasification Modeling Approaches for Fluidized Bed Gasifiers
,” Biomass Bioenergy
, 91
, pp. 69
–82
.11.
Prins
, M. J.
, Ptasinski
, K. J.
, and Janssen
, F. J. J. G.
, 2007
, “From Coal to Biomass Gasification: Comparison of Thermodynamic Efficiency
,” Energy
, 32
(7
), pp. 1248
–1259
.12.
Sharma
, A. K.
, 2008
, “Equilibrium Modeling of Global Reduction Reactions for a Downdraft (Biomass) Gasifier
,” Energy Convers. Manage.
, 49
(4
), pp. 832
–842
.13.
Vitasari
, C. R.
, Jurascik
, M.
, and Ptasinskiv
, K. J.
, 2011
, “Exergy Analysis of Biomass-to-Synthetic Natural Gas (SNG) Process Via Indirect Gasification of Various Biomass Feedstock
,” Energy
, 36
(6
), pp. 3825
–3837
.14.
Buragohain
, B.
, Mahanta
, P.
, and Moholkar
, V. S.
, 2010
, “Thermodynamic Optimization of Biomass Gasification for Decentralized Power Generation and Fischer-Tropsch Synthesis
,” Energy
, 35
(6
), pp. 2557
–2579
.15.
Melgar
, A.
, Prez
, J. F.
, Laget
, H.
, and Horillo
, A.
, 2007
, “Thermochemical Equilibrium Modelling of a Gasifying Process
,” Energy Convers. Manage.
, 48
(1
), pp. 59
–67
.16.
Mathieu
, P.
, and Dubuisson
, R.
, 2002
, “Performance Analysis of a Biomass Gasifier
,” Energy Convers. Manage.
, 43
(9–12
), pp. 129
–1299
.17.
Haryanto
, A.
, Fernando
, S. D.
, Pordesimo
, L. O.
, and Adhikari
, S.
, 2009
, “Upgrading of Syngas Derived From Biomass Gasification: A Thermodynamic Analysis
,” Biomass Bioenergy
, 33
(5
), pp. 882
–889
.18.
Rodriguez-Alejandro
, D. A.
, Nam
, H.
, Maglinao
, A. L.
, Capareda
, S. C.
, and Aguilera-Alvarado
, A. F.
, 2016
, “Development of a Modified Equilibrium Model for Biomass Pilot-Scale Fluidized Bed Gasifier Performance Predictions
,” Energy
, 115
(Pt. 1), pp. 1092
–1108
.19.
Li
, X.
, Grace
, J. R.
, Watkinson
, A. P.
, Lim
, C. J.
, and Ergüdenler
, A.
, 2001
, “Equilibrium Modeling of Gasification: A Free Energy Minimization Approach and Its Application to a Circulating Fluidized Bed Coal Gasifier
,” Fuel
, 80
(2
), pp. 195
–207
.20.
Li
, X. T.
, Grace
, J. R.
, Lim
, C. J.
, Watkinson
, A. P.
, Chen
, H. P.
, and Kim
, J. R.
, 2004
, “Biomass Gasification in a Circulating Fluidized Bed
,” Biomass Bioenergy
, 26
(2
), pp. 171
–193
.21.
Gröbl
, T.
, Walter
, H.
, and Haider
, M.
, 2012
, “Biomass Steam Gasification for Production of SNG—Process Design and Sensitivity Analysis
,” Appl. Energy
, 97
, pp. 451
–461
.22.
Schuster
, G.
, Löffler
, G.
, Weigl
, K.
, and Hofbauer
, H.
, 2001
, “Biomass Steam Gasification—An Extensive Parametric Modeling Study
,” Bioresour. Technol.
, 77
(1
), pp. 71
–79
.23.
Panopoulos
, K. D.
, Fryda
, L. E.
, Karl
, J.
, Poulou
, S.
, and Kakaras
, E.
, 2006
, “High Temperature Solid Oxide Fuel Cell Integrated With Novel Allothermal Biomass Gasification—Part I: Modelling and Feasibility Study
,” J. Power Sources
, 159
(1
), pp. 570
–585
.24.
Fryda
, L.
, Panopoulos
, K.
, Karl
, J.
, and Kakaras
, E.
, 2008
, “Exergetic Analysis of Solid Oxide Fuel Cell and Biomass Gasification Integration With Heat Pipes
,” Energy
, 33
(2
), pp. 292
–299
.25.
Juraščk
, M.
, Sues
, A.
, and Ptasinski
, K. J.
, 2010
, “Exergy Analysis of Synthetic Natural Gas Production Method From Biomass
,” Energy
, 35
(2
), pp. 880
–888
.26.
Bang-Møller
, C.
, and Rokni
, M.
, 2010
, “Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems
,” Energy Convers. Manage.
, 51
(11
), pp. 2330
–2339
.27.
Bang-Møller
, C.
, Rokni
, M.
, and Elmegaard
, B.
, 2011
, “Exergy Analysis and Optimization of a Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid System
,” Energy
, 36
(8
), pp. 4740
–4752
.28.
van der Meijden
, C. M.
, Veringa
, H. J.
, and Rabou
, L. P. L. M.
, 2010
, “The Production of Synthetic Natural Gas (SNG): A Comparison of Three Wood Gasification Systems for Energy Balance and Overall Efficiency
,” Biomass Bioenergy
, 34
(3
), pp. 302
–311
.29.
Damiani
, L.
, and Trucco
, A.
, 2009
, “Biomass Gasification Modelling: An Equilibrium Model, Modified to Reproduce the Operation of Actual Reactors
,” ASME
Paper No. GT2009-60323.30.
Jarungthammachote
, S.
, and Dutta
, A.
, 2007
, “Thermodynamic Equilibrium Model and Second Law Analysis of a Downdraft Waste Gasifier
,” Energy
, 32
(9
), pp. 1660
–1669
.31.
Huang
, H.
, and Ramaswamy
, S.
, 2009
, “Modeling Biomass Gasification Using Thermodynamic Equilibrium Approach
,” Appl. Biochem. Biotechnol.
, 154
(1–3
), pp. 17
–25
.32.
Loha
, C.
, Chatterjee
, P. K.
, and Chattopadhyay
, H.
, 2011
, “Performance of Fluidized Bed Steam Gasification of Biomass—Modeling and Experiment
,” Energy Convers. Manage.
, 52
(3
), pp. 1583
–1588
.33.
Pröll
, T.
, and Hofbauer
, H.
, 2008
, “Development and Application of a Simulation Tool for Biomass Gasification Based Processes
,” Int. J. Chem. React. Eng.
, 6
(1
), pp. 1
–56
.34.
Pröll
, T.
, and Hofbauer
, H.
, 2008
, “H2 Rich Syngas by Selective CO2 Removal From Biomass Gasification in a Dual Fluidized Bed System—Process Modelling Approach
,” Fuel Process. Technol.
, 89
(11
), pp. 1207
–1217
.35.
Gumz
, W.
, 1950
, Gas Producers and Blast Furnaces
, Wiley
, New York
.36.
Duret
, A.
, Friedli
, C.
, and Marchal
, F.
, 2005
, “Process Design of Synthetic Natural Gas (SNG) Production Using Wood Gasification
,” J. Cleaner Prod.
, 13
(15
), pp. 1434
–1446
.37.
Gassner
, M.
, and Marchal
, F.
, 2009
, “Thermo-Economic Process Model for Thermochemical Production of Synthetic Natural Gas (SNG) From Lignocellulosic Biomass
,” Biomass Bioenergy
, 33
(11
), pp. 1587
–1604
.38.
Pröll
, T.
, 2004
, “Potentiale der Wirbelschichtdampfvergasung fester Biomasse - Modellierung und Simulation auf Basis der Betriebserfahrungen am Biomassekraftwerk Güssing
,” Ph.D. thesis, Vienna University of Technology, Vienna, Austria.39.
Gröbl
, T.
, Walter
, H.
, and Haider
, M.
, 2011
, “Biomass Steam Gasification—Mathematical Modeling of an Innovative Pressurized Gasification Process
,” Second International Conference on Heat and Mass Transfer
, Chennai, India, Dec. 27–30, pp. 66
–71
.40.
Gröbl
, T.
, Walter
, H.
, Haider
, M.
, and Gallmetzer
, G.
, 2011
, “Biomass Steam Gasification—Mathematical Modeling and Analysis of the Thermo-Chemical Gasification Process
,” Third International Conference on Polygeneration Strategies
, pp. 261
–268
.41.
Gómez-Barea
, A.
, Thunman
, H.
, Leckner
, B.
, Campoy
, M.
, and Ollero
, P.
, 2007
, “Prediction of Gas Composition in Biomass Gasifiers
,” Second International Congress of Energy and Environment Engineering and Management
, Badajoz, Spain, June 6–8, Paper No. ER-030
.42.
Salem
, A. M.
, and Paul
, M. C.
, 2018
, “An Integrated Kinetic Model for Downdraft Gasifier Based on a Novel Approach That Optimises the Reduction Zone of Gasifier
,” Biomass Bioenergy
, 109
, pp. 172
–181
.43.
Rao
, M. S.
, Singh
, S. P.
, Sodha
, M. S.
, Dubey
, A. K.
, and Shyam
, M.
, 2004
, “Stoichiometric, Mass, Energy and Exergy Balance Analysis of Countercurrent Fixed-Bed Gasification of Post-Consumer Residues
,” Biomass Bioenergy
, 27
(2
), pp. 155
–171
.44.
Ratnadhariya
, J. K.
, and Channiwala
, S. A.
, 2009
, “Three Zone Equilibrium and Kinetic Free Modeling of Biomass Gasifier—A Novel Approach
,” Renewable Energy
, 34
(4
), pp. 1050
–1058
.45.
Tepper
, H.
, 2005
, “Zur Vergasung von Rest- und Abfallholz in Wirbelschichtreaktoren für dezentrale Energieversorgungsanlagen
,” Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany.46.
Ngo
, S. I.
, Nguyen
, T. D.
, Lim
, Y.-I.
, Song
, B.-H.
, Lee
, U.-D.
, Choi
, Y.-T.
, and Song
, J.-H.
, 2011
, “Performance Evaluation for Dual Circulating Fluidized-Bed Steam Gasifier of Biomass Using Quasi-Equilibrium Three-Stage Gasification Model
,” Appl. Energy
, 88
(12
), pp. 5208
–5220
.47.
Nguyen
, T. D. B.
, Ngo
, S. I.
, Lim
, Y.-I.
, Lee
, J. W.
, Lee
, U.-D.
, and Song
, B.-H.
, 2012
, “Three-Stage Steady-State Model for Biomass Gasification in a Dual Circulating Fluidized-Bed
,” Energy Convers. Manage.
, 54
(1
), pp. 100
–112
.48.
Sadaka
, S. S.
, Ghaly
, A. E.
, and Sabbah
, M. A.
, 2002
, “Two Phase Biomass Air-Steam Gasification Model for Fluidized Bed Reactors—Part I: Model Development
,” Biomass Bioenergy
, 22
(6
), pp. 439
–462
.49.
Kuo
, P.-C.
, Wu
, W.
, and Chen
, W.-H.
, 2014
, “Gasification Performances of Raw and Torrefied Biomass in a Downdraft Fixed Bed Gasifier Using Thermodynamic Analysis
,” Fuel
, 117
(Pt. B), pp. 1231
–1241
.50.
Karl, J.,
2001
, “Vorrichtung zur Vergasung biogener Einsatzstoffe
,” Technical University of Munich, Germany, Patent No. Patentschrift DE19926202 C1.51.
Metz
, T.
, 2006
, “Allotherme Vergasung von Biomasse in indirekt beheizten Wirbelschichten
,” Ph.D. thesis, Technische Universität München, Munich, Germany.52.
Schmitz
, W.
, Karl
, J.
, and Hein
, D.
, 2000
, “Allothermal Fluidized Bed Gasification—Possibilities for the Implementation of the Heat Input in Fluidized Beds
,” First World Conference on Biomass for Energy and Industry
, Sevilla, Spain, June 5–9, pp. 1566
–1569
.53.
Karl
, J.
, and Hein
, D.
, 2002
, “Performance Characteristics of the Biomass Heatpipe Reformer
,” 12th European Conference on Biomass for Energy and Climate Protection
, Amsterdam, The Netherlands, June 17–21.54.
Karellas
, S.
, Karl
, J.
, and Kakaras
, E.
, 2008
, “An Innovative Biomass Gasification Process and Its Coupling With Microturbine and Fuel Cell Systems
,” Energy
, 33
(2
), pp. 284
–291
.55.
Karl
, J.
, Gallmetzer
, G.
, Hochleithner
, T.
, Kienberger
, T.
, Schweiger
, A.
, and Kroener
, M.
, 2009
, “Small-Scale Generation of Substitute Natural Gas
,” First International Conference on Polygeneration Strategies
, Vienna, Austria, Sept. 1–4.56.
Gallmetzer
, G.
, Ackermann
, P.
, Schweiger
, A.
, Kienberger
, T.
, Gröbl
, T.
, Walter
, H.
, Zankl
, M.
, and Kröner
, M.
, 2011
, “The Agnion Heatpipe-Reformer—Operating Experiences and Evaluation of Fuel Conversion and Syngas Composition
,” Third International Conference on Polygeneration Strategies
, pp. 13
–22
.57.
Panopoulos
, K.
, Fryda
, L.
, Karl
, J.
, Poulou
, S.
, and Kakaras
, E.
, 2006
, “High Temperature Solid Oxide Fuel Cell Integrated With Novel Allothermal Biomass Gasification—Part II: Exergy Analysis
,” J. Power Sources
, 159
(1
), pp. 586
–594
.58.
Kaltschmitt
, M.
, Hartman
, H.
, and Hofbauer
, H.
, 2009
, Energie Aus Biomasse - Grundlagen, Techniken Und Verfahren
, 2nd ed., Springer-Verlag
, Berlin
.59.
Roider
, J.
, 2002
, “Kinetic Modeling of Biomass Gasification With Steam in a Fluidized Bed
,” M.S. thesis, Vienna University of Technology, Vienna, Austria.60.
Di Blasi
, C.
, 2008
, “Modeling Chemical and Physical Processes of Wood and Biomass Pyrolysis
,” Prog. Energy Combust. Sci.
, 34
(1
), pp. 47
–90
.61.
Merrick
, D.
, 1983
, “Mathematical Models of the Thermal Decomposition of Coal—1: The Evolution of Volatile Matter
,” Fuel
, 62
(5
), pp. 534
–539
.62.
Prasad
, B. V. R. K.
, and Kuester
, J. L.
, 1988
, “Process Analysis of a Dual Fluidized Bed Biomass Gasification System
,” Ind. Eng. Chem. Res.
, 27
(2
), pp. 304
–310
.63.
Sadaka
, S. S.
, Ghaly
, A. E.
, and Sabbah
, M. A.
, 2002
, “Two Phase Biomass Air-Steam Gasification Model for Fluidized Bed Reactors—Part II: Model Sensitivity
,” Biomass Bioenergy
, 22
(6
), pp. 463
–477
.64.
Sadaka
, S. S.
, Ghaly
, A. E.
, and Sabbah
, M. A.
, 2002
, “Two-Phase Biomass Air-Steam Gasification Model for Fluidized Bed Reactors—Part III: Model Validation
,” Biomass Bioenergy
, 22
(6
), pp. 479
–487
.65.
Higman
, C.
, and van der Burgt
, M.
, 2003
, Gasification
, Elsevier Science
, Amsterdam, The Netherlands.66.
Barrio
, M.
, 2002
, “Experimental Investigation of Small-Scale Gasification of Woody Biomass
,” Ph.D. thesis
, The Norwegian University of Science and Technology, Trondheim, Norway.67.
Pröll
, T.
, Rauch
, R.
, Aichernig
, C.
, and Hofbauer
, H.
, 2007
, “Fluidized Bed Steam Gasification of Solid Biomass—Performance Characteristics of an 8 MWth Combined Heat and Power Plant
,” Int. J. Chem. Reactor Eng.
, 5
(1
), p. A54
.68.
Kaushal
, P.
, Abedi
, J.
, and Mahinpey
, N.
, 2010
, “A Comprehensive Mathematical Model for Biomass Gasification in a Bubbling Fluidized Bed Reactor
,” Fuel
, 89
(12
), pp. 3650
–3661
.69.
Kee
, R. J.
, Rupley
, F. M.
, Meeks
, E.
, and Miller
, J. A.
, 1996
, “CHEMKIN-III: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-phase Chemical and Plasma Kinetics
,” Sandia National Laboratories, Livermore, CA, Report No. SAND96-8216
.70.
Kienberger
, T.
, 2010
, “Methanierung biogener Synthesegase mit Hinblick auf die direkte Umsetzung von hoeheren Kohlenwasserstoffen
,” Ph.D. thesis, Graz University of Technology, Graz, Austria.71.
Gallmetzer
, G.
, Ackermann
, P.
, Schweiger
, A.
, Kienberger
, T.
, Gröbl
, T.
, Walter
, H.
, Zankl
, M.
, and Kröner
, M.
, 2012
, “The Agnion Heatpipe-Reformer—Operating Experiences and Evaluation of Fuel Conversion and Syngas Composition
,” Biomass Convers. Biorefin.
, 2
(3
), pp. 207
–215
.72.
van den Berg
, C.
, 2010
, Personal correspondence (unpublished), agnion.73.
Bolhàr-Nordenkampf
, M.
, Rauch
, R.
, Bosch
, K.
, Aichernig
, C.
, and Hofbauer
, H.
, 2003
, “Biomass CHP Plant Güssing - Using Gasification for Power Generation
,” Second Regional Conference on Energy Technology Towards a Clean Envionnment, Conference
(RCETCE
), Phuket, Thailand, Feb. 12–14, pp. 567
–572
.Copyright © 2018 by ASME
You do not currently have access to this content.