This paper deals with an integrated biomass system developed for syngas production with waste heat recovery option and analyzes this system thermodynamically using both energy and exergy approaches. Also, an aspenplus simulation model is developed to demonstrate comparative gasification analyses of wood (Birch) and olive waste using Gibbs reactor for syngas production. Gibbs free energy minimization technique is applied to calculate the equilibrium of chemical reactions. In this newly developed model, the heat of the product syngas and the waste heat from the flue gas are recovered through a unique integration of four heat exchangers to produce steam for the gasification process. The sensitivity analyses are performed to observe the variations in the concentration of the methane, carbon monoxide and carbon dioxide in syngas against various operating conditions. Furthermore, the performance of gasifier is indicated through cold gas energy efficiency (CGE) and cold gas exergy efficiency (CGEX). The overall energy and exergy analyses are also conducted, and the comparisons reveal that the biomass composed of olive waste yields high magnitude of overall and cold gas energy efficiencies, whereas wood (Birch) yields high magnitude of overall and cold gas exergy efficiencies. Moreover, the energy of the product syngas is recovered through an expander which enhances energy and exergy efficiencies of the overall system. The present results show that the CGE, CGEX, and overall energetic and exergetic efficiencies follow a decreasing trend with the increase in combustion temperature. The proposed system has superior and unique features as compared to conventional biomass gasification systems.

References

1.
Sawin, J. L.,
2014
, “
Renewables 2014 Global Status Report
,” REN 21 Secretariat, Paris, France, accessed May 7, 2015, http://www.ren21.net/Portals/0/documents/Resources/GSR/2014/GSR2014_full%20report_low%20res.pdf
2.
Cohce
,
M. K.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2011
, “
Energy and Exergy Analyses of a Biomass-Based Hydrogen Production System
,”
Bioresour. Technol.
,
102
(
18
), pp.
8466
8474
.
3.
Mujeebu
,
M. A.
,
Jayaraj
,
S.
,
Ashok
,
S.
,
Abdullah
,
M. Z.
, and
Khalil
,
M.
,
2009
, “
Feasibility Study of Cogeneration in a Plywood Industry With Power Export to Grid
,”
Appl. Energy
,
86
(
5
), pp.
657
662
.
4.
Assima
,
S.
,
Dell'Orco
,
G. P.
,
Navaee-Ardeh
,
J.-M.
, and
Lavoie
,
S.
,
2017
, “
Catalytic Conversion of Residual Fine Char Recovered by Aqueous Scrubbing of Syngas From Urban Biomass Gasification
,”
Biomass Bioenergy
,
100
, pp.
98
107
.
5.
Landis
,
D. A.
,
Gratton
,
C.
,
Jackson
,
R. D.
,
Gross
,
K. L.
,
Duncan
,
D. S.
,
Liang
,
C.
,
Meehan
,
T. D.
,
Robertson
,
B. A.
,
Schmidt
,
T. M.
,
Stahlheber
,
K. A.
,
Tiedje
,
J. M.
, and
Werling
,
B. P.
,
2017
, “
Biomass and Biofuel Crop Effects on Biodiversity and Ecosystem Services in the North Central US
,”
Biomass Bioenergy
, in press.
6.
Martyniak
,
D.
,
Żurek
,
G.
, and
Prokopiuk
,
K.
,
2017
, “
Biomass Yield and Quality of Wild Populations of Tall Wheatgrass [Elymus Elongatus (Host.) Runemark]
,”
Biomass Bioenergy
,
101
, pp.
21
29
.
7.
Lapa
,
N.
,
Santos Oliveira
,
J. F.
,
Camacho
,
S. L.
, and
Circeo
,
L. J.
,
2002
, “
An Ecotoxic Risk Assessment of Residue Materials Produced by the Plasma Pyrolysis/Vitrification (PP/V) Process
,”
Waste Manage.
,
22
(
3
), pp.
335
342
.
8.
Basu
,
P.
,
2013
,
Biomass Gasification, Pyrolysis and Torrefaction, Practical Design and Theory
, 2nd ed.,
Academic Press
, San Diego, CA.
9.
Wilk
,
V.
,
Kitzler
,
H.
,
Koppatz
,
S.
,
Pfeifer
,
C.
, and
Hofbauer
,
H.
,
2010
, “
Gasification of Residues and Waste Wood in a Dual Fluidised Bed Steam Gasifier
,”
International Conference on Polygeneration Strategies
(
ICPS 10
), Leipzig, Germany, Sept. 7–9, p. 10.
10.
Hofbauer
,
H.
,
Rauch
,
R.
,
Bosch
,
K.
,
Koch
,
R.
, and
Aichernig
,
C.
,
2002
, “
Biomass CHP Plant Güssing—A Success Story
,”
Expert Meeting on Pyrolysis and Gasification of Biomass and Waste
, Strasbourg, France, Sept. 30–Oct. 1, p. 13.
11.
Thapa
,
R. K.
, and
Halvorsen
,
B. M.
,
2014
, “
Stepwise Analysis of Reactions and Reacting Flow in a Dual Fluidized Bed Gasification Reactor
,”
Adv. Fluid Mech.
,
82
(12), pp.
37
48
.
12.
Ratner
,
M.
, and
Glover
,
C.
,
2014
, “
U.S. energy: Overview and Key Statistics
,” Congressional Research Service, p. 40.
13.
Kumar
,
A.
,
Noureddini
,
H.
,
Demirel
,
Y.
,
Jones
,
D. D.
, and
Hanna
,
M. A.
,
2009
, “
Simulation of Corn Stover and Distillers Grains Gasificaion With Aspen plus
,”
Am. Soc. Agric. Biol. Eng.
,
52
(
6
), pp.
1989
1995
.
14.
Kumar
,
A.
,
Demirel
,
Y.
,
Jones
,
D. D.
, and
Hanna
,
M. A.
,
2010
, “
Optimization and Economic Evaluation of Industrial Gas Production and Combined Heat and Power Generation From Gasification of Corn Stover and Distillers Grains
,”
Bioresour. Technol.
,
101
(
10
), pp.
3696
3701
.
15.
Zhang
,
Z.
,
Zhu
,
M.
,
Hobson
,
P.
,
Doherty
,
W.
, and
Zhang
,
D.
,
2018
, “
Contrasting the Pyrolysis Behavior of Selected Biomass and the Effect of Lignin
,”
ASME J. Energy Resour. Technol.
,
140
(
6
), p. 062201.
16.
Jin
,
H.
,
Chen
,
B.
,
Zhao
,
X.
, and
Cao
,
C.
,
2017
, “
Molecular Dynamic Simulation of Hydrogen Production by Catalytic Gasification of Key Intermediates of Biomass in Supercritical Water
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p. 041801.
17.
Ren
,
X.
,
Meng
,
X.
,
Panahi
,
A.
,
Rokni
,
E.
,
Sun
,
R.
, and
Levendis
,
A. Y.
,
2017
, “
Hydrogen Chloride Release From Combustion of Corn Straw in a Fixed Bed
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051801
.
18.
Wladyslaw
,
M.
,
2017
, “
Co-Combustion of Pulverized Coal and Biomass in Fluidized Bed of Furnace
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p. 062204.
19.
Chen
,
L.
,
Song
,
P.
,
Long
,
W.
,
Feng
,
L.
,
Zhang
,
J.
, and
Wang
,
Y.
,
2017
, “
Experimental Study of Operation Stability of a Spark Ignition Engine Fueled With Coal Bed Gas
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
044501
.
20.
Zhao
,
Y.
,
Feng
,
D.
,
Zhang
,
Z.
,
Sun
,
S.
,
Che
,
H.
, and
Luan
,
J.
,
2017
, “
Experimental Study on Autothermal Cyclone Air Gasification of Biomass
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p. 042001.
21.
Thushari
,
P. G. I.
, and
Babel
,
S.
,
2017
, “
Biodiesel Production From Waste Palm Oil Using Palm Empty Fruit Bunch-Derived Novel Carbon Acid Catalyst
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p. 032204.
22.
Kordoghli
,
S.
,
Paraschiv
,
M.
,
Tazerout
,
M.
,
Khiari
,
B.
, and
Zagrouba
,
F.
,
2016
, “
Novel Catalytic Systems for Waste Tires Pyrolysis: Optimization of Gas Fraction
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032203
.
23.
Zanzi
,
R.
,
Sjöström
,
K.
, and
Björnbom
,
E.
,
2002
, “
Rapid Pyrolysis of Agricultural Residues at High Temperature
,”
Biomass Bioenergy
,
23
(
5
), pp.
357
366
.
24.
Pröll
,
T.
,
Rauch
,
R.
,
Aichernig
,
C.
, and
Hofbauer
,
H.
,
2007
, “
Fluidized Bed Steam Gasification of Solid Biomass—Performance Characteristics of an 8 MWth Combined Heat and Power Plant
,”
Int. J. Chem. React. Eng.
,
5
(
1
), pp. 937–944.
25.
Doherty
,
W.
,
Reynolds
,
A.
, and
Kennedy
,
D.
,
2013
,
Materials and Processes for Energy: Communicating Current Research and Technological Developments
,
A.
Méndez-Vilas
, ed.,
Formatex Research Centre
, Badajoz, Spain.
26.
Keating
,
E. L.
,
2007
,
Applied Combustion
, 2nd ed.,
Taylor & Francis
,
New York
.
27.
Szargut
,
J.
,
Morris
,
D. R.
, and
Steward
,
F. R.
,
1988
,
Exergy Analysis of Thermal, Chemical, and Metallurgical Process
,
Hemisphere Publishing Corporation
, New York.
28.
Szargut
,
J.
,
2005
,
Exergy Method: Technical and Ecological Applications
,
WIT Press
,
Boston, MA
.
29.
Gronli
,
M. G.
,
Melaaen
,
M. C.
,
Grønli
,
M.
, and
Melaaen
,
M. C.
,
2000
, “
Mathematical Model for Wood Pyrolysis—Comparison of Experimental Measurements With Model Predictions
,”
Energy Fuels
,
14
(
4
), pp.
791
800
.
You do not currently have access to this content.