The gas–liquid cylindrical cyclone (GLCC) is a widely used alternative for gas–liquid conventional separation. Besides its maturity, the effect of some geometrical parameters over its performance is not fully understood. The main objective of this study is to use computational fluid dynamics (CFD) modeling in order to evaluate the effect of geometrical modifications in the reduction of liquid carry over (LCO) and gas carry under (GCU). Simulations for two-phase flow were carried out under zero net liquid flow, and the average liquid holdup was compared with Kanshio (Kanshio, S., 2015, “Multiphase Flow in Pipe Cyclonic Separator,” Ph.D. thesis, Cranfield University, Cranfield, UK) obtaining root-mean-square errors around 13% between CFD and experimental data. An experimental setup, in which LCO data were acquired, was built in order to validate a CFD model that includes both phases entering to the GLCC. An average discrepancy below 6% was obtained by comparing simulations with experimental data. Once the model was validated, five geometrical variables were tested with CFD. The considered variables correspond to the inlet configuration (location and inclination angle), the effect of dual inlet, and nozzle geometry (diameter and area reduction). Based on the results, the best configuration corresponds to an angle of 27 deg, inlet location 10 cm above the center, a dual inlet with 20 cm of spacing between both legs, a nozzle of 3.5 cm of diameter, and a volute inlet of 15% of pipe area. The combination of these options in the same geometry reduced LCO by 98% with respect to the original case of the experimental setup. Finally, the swirling decay was studied with CFD showing that liquid has a greater impact than the gas flowrate.

References

1.
Frising
,
T.
,
Noik
,
C.
, and
Dalmazzone
,
C.
,
2006
, “
The Liquid/Liquid Sedimentation Process: From Droplet Coalescence Technologically Enhanced Water/Oil Emulsion Gravity Separators: A Review
,”
J. Dispersion Sci. Technol.
,
27
(7), pp. 1035–1057
2.
Gomez
,
L. E.
,
Mohan
,
R. S.
,
Shoham
,
O.
,
Marrelli
,
J. D.
, and
Kouba
,
G. E.
,
1999
, “
Aspect Ratio Modeling and Design Procedure for GLCC Compact Separators
,”
ASME J. Energy Resour. Technol.
,
121
(
1
), pp.
15
23
.
3.
Hreiz
,
R.
,
Gentric
,
C.
, and
Midoux
,
N.
,
2011
, “
Numerical Investigation of Swirling Flow in Cylindrical Cyclones
,”
Chem. Eng. Res. Des.
,
89
(12), pp. 2521–2539.
4.
Movafaghian
,
S.
,
1997
, “
The Effects of Geometry, Fluid Properties and Pressure on the Flow Hydrodynamics in Gas-Liquid Cylindrical Cyclone Separators
,” M.Sc. thesis, University of Tulsa, Tulsa, OK.
5.
Shoham
,
O.
, and
Kouba
,
G. E.
,
1998
, “
State of the Art of Gas/Liquid Cylindrical-Cyclone Compact Separator Technology
,”
J. Pet. Technol.
,
50
(
7
), pp. 58–65.
6.
Hreiz
,
R.
,
Gentric
,
C.
,
Midoux
,
N.
,
Lainé
,
R.
, and Fünfschilling, D.,
2014
, “
Hydrodynamics and Velocity Measurements in Gas-Liquid Swirling Flows in Cylindrical Cyclones
,”
Chem. Eng. Res. Des.
,
92
(11), pp. 2231–2246.
7.
Gomez
,
L. E.
,
2001
, “
Dispersed Two-Phase Swirling Flow Characterization for Predicting Gas Carry-Under in Gas-Liquid Cylindrical Cyclone Compact Separators
,” Ph.D. thesis, University of Tulsa, Tulsa, OK.
8.
Arpandi
,
I. A.
,
1995
, “
A Mechanistic Model for Two-Phase Flow in Gas-Liquid Cylindrical Cyclone Separators
,” Master thesis, University of Tulsa, Tulsa, OK.
9.
Marti
,
K.
,
Erdal
,
F.
,
Shoham
,
O.
,
Shirazi
,
S.
, and
Kouba
,
G.
,
1996
, “
Analysis of Gas Carry Under in Gas-Liquid Cylindrical Cyclones
,”
Hydrocyclones International Meeting
,
Cambridge
, UK, Apr. 2–4, pp. 2–4https://www.scribd.com/document/348913264/Analysis-of-Gas-Carry-Under-in-Gas-Liquid-Cylindrical-Cyclones-pdf
10.
Movafaghian
,
S.
,
Jaua-Marturet
,
J. A.
,
Mohan
,
R. S.
,
Shoham
,
O.
, and
Kouba
,
G. E.
,
2000
, “
The Effects of Geometry, Fluid Properties and Pressure on the Hydrodynamics of Gas-Liquid Cylindrical Cyclone Separators
,”
Int. J. Multiphase Flow
,
26
(
6
), pp.
999
1018
.
11.
Erdal
,
F. M.
,
Shirazi
,
S. A.
,
Shoham
,
O.
, and
Kouba
,
G. E.
,
1997
, “
CFD Simulation of Single-Phase and Two-Phase Flow in Gas-Liquid Cylindrical Cyclone Separators
,”
SPE J.
,
2
(4), pp. 436–446.
12.
Steenbergen
,
W.
, and
Voskamp
,
J.
,
1998
, “
The Rate of Decay of Swirl in Turbulent Pipe Flow
,”
Flow Meas. Instrum.
,
9
(2), pp. 67–78.
13.
Erdal
,
F.
,
Mantilla
,
I.
,
Shirazi
,
S.
, and
Shoham
,
O.
,
1998
, “
Simulation of Free Interface Shape and Complex Two-Pahse Flow Behavior in a Gas-Liquid Cylindrical Separator
,”
ASME Fluids Engineering Division Summer Meeting
, Washington, DC, June 21–25.https://www.semanticscholar.org/paper/Simulation-of-Free-Interface-Shape-and-Complex-Flow-Erdal-Mantilla/c8cd51af1cb6529e7f83e829e9f965000f85cc9b
14.
Manitlla
,
I.
,
Shirazi
,
S. A.
, and
Shoham
,
O.
,
1999
, “
Flow Field Prediction and Bubble Trajectory Model in Gas-Liquid Cylindrical Cyclone (GLCC) Separators
,”
ASME J. Energy Resour. Technol.
,
121
(
1
), pp.
9
14
.
15.
Erdal, F. M., Shirazi, S. A., Mantilla, I., and Shoham, O.,
1998
, “
CFD Study of Bubble Carry-Under in Gas-Liquid Cylindrical Cyclone Separators
,” SPE Annual Technical Conference and Exhibition, New Orleans, LA, Sept. 27–30,
SPE
Paper No. SPE-49309-MS.
16.
Chirinos
,
W. A.
,
Gomez
,
L. E.
,
Wang
,
S.
,
Mohan
,
R.
,
Shoham
,
O.
, and
Kouba
,
G.
,
1999
, “
Liquid Carry-Over in Gas/Liquid Cylindrical Cyclone Compact Separators
,” SPE Annual Technical Conference and Exhibition, Houston, TX, Oct. 3–6,
SPE
Paper No. SPE-56582-MS.
17.
Erdal
,
F. M.
, and
Shirazi
,
S.
,
2004
, “
Local Velocity Measurements and Computational Fluid Dynamics (CFD) Simulations of Swirling Flow in a Cylindrical Cyclone Separator
,”
ASME J. Energy Resour. Technol.
,
126
(
4
), pp.
326
333
.
18.
Avila
,
C.
,
Wang
,
S.
,
Gomez
,
L.
,
Mohan
,
R.
, and
Shoham
,
O.
,
2003
, “
Mathematical Modeling for Integrated Three-Phase Compact Separators
,”
ISA Expo
, Paper No.
ISA03-P161
.http://tustp.org/publications/Paper%20Avila%20ISA_PDF.pdf
19.
Guzmán
,
N. M.
,
2005
, “
Foam Flow in Gas-Liquid Cylindrical Cyclone (GLCC) Compact Separator
,” Ph.D. thesis, University of Tulsa, Tulsa, OK.
20.
Najafi
,
A. F.
,
Saidi
,
M. H.
,
Sadeghipour
,
M. S.
, and
Souhar
,
M.
,
2005
, “
Numerical Analysis of Turbulent Swirling Decay Pipe Flow
,”
Int. Commun. Heat and Mass Transfer
,
32
(5), pp. 627–638.
21.
Adebare
,
A.
,
2006
, “
Optimizing the Efficiency of Cylindrical Cyclone Gas/Liquid Separators for Field Applications
,”
M.Sc. thesis
, Texas A&M University, College Station, TX.http://oaktrust.library.tamu.edu/handle/1969.1/4417
22.
Grupta
,
A.
, and
Kumar
,
R.
,
2007
, “
Three Dimensional Turbulent Swirling Flow in a Cylinder: Experiments and Computations
,”
Int. J. Heat Fluid Flow
,
28
(2), pp. 249–261.
23.
Brito
,
A.
, and
Trujillo
,
J.
,
2009
, “
Viscosity Effect in Cyclone Separators Performance
,”
Latin American and Caribbean Petroleum Engineering Conference
, Cartagena de Indias, Colombia, May 31–June 3,
SPE
Paper No. SPE-120899-MS.
24.
Hreiz
,
R.
,
Lainé
,
R.
,
Wu
,
J.
,
Lemaitre
,
C.
,
Gentric
,
C.
, and
Funfschilling
,
D.
,
2014
, “
On the Effect of the Nozzle Design on the Performances of Gas-Liquid Cylindrical Cyclone Separators
,”
Int. J. Multiphase Flow
,
58
, pp. 15–26.
25.
Kanshio
,
S.
,
Yeung
,
H.
, and
Lao
,
L.
,
2015
, “
The Experimental Study of Liquid Holdup in Gas-Liquid Pipe Cyclonic Separator Using Electrical Resistance Tomography and Wire Mesh Sensor
,”
17th International Conference on Multiphase Production Technology
, Cannes, France, June 10–12, Paper No.
BHR-2015-D3
https://www.onepetro.org/conference-paper/BHR-2015-D3.
26.
Versteeg
,
H.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics
,
Pearson Education
, London, pp.
1
6
, 12–14.
27.
Celik
,
B.
,
Ghia
,
U.
,
Roache
,
J.
,
Freitas
,
J.
,
Coleman
,
H.
, and
Raad
,
P.
,
2008
, “
Procedure for Estimation and Reporting Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(7), p. 078001.
28.
CD-Adapco
,
2016
, “
STAR-CCM+ User Guide
,” CD-Adapco, Melville, NY.
29.
Kouba
,
G. E.
, and
Shoham
,
O.
,
1996
, “
A Review of Gas-Liquid Cylindrical Cyclone (GLCC) Technology
,”
Production Separation Systems International Conference
, Aberdeen, UK, Apr. 23–24, pp. 1–25.https://pdfs.semanticscholar.org/d6af/1b47db8fd2b737922b6b44dd8a55018dfa70.pdf
30.
Van Sy
,
L.
,
2017
, “
Influence of Inlet Angle on Flow Pattern and Performance of Gas-Liquid Cylindrical Cyclone Separator
,”
Part. Sci. Technol.
,
35
(5), pp. 555–564.
31.
Wang
,
S.
,
Gomez
,
L.
,
Mohan
,
R.
,
Shoham
,
O.
,
Kouba
,
G.
, and
Marrelli
,
J.
,
2010
, “
The State-of-the-Art of Gas-Liquid Cylindrical Cyclone Control Technology: From Laboratory to Field
,”
ASME J. Energy Resour. Technol.
,
132
(
3
), p.
032701
.
32.
Wang
,
S.
,
Mohan
,
R.
,
Shoham
,
R.
,
Marrelli
,
J.
, and
Kouba
,
G.
,
2000
, “
Performance Improvement of Gas Liquid Cylindrical Cyclone Separators Using Integrated Level and Pressure Control Systems
,”
ASME J. Energy Resour. Technol.
,
122
(
4
), pp.
185
192
.
33.
Kanshio
,
S.
,
2015
, “
Multiphase Flow in Pipe Cyclonic Separator
,”
Ph.D. thesis
, Cranfield University, Cranfield, UK.https://dspace.lib.cranfield.ac.uk/handle/1826/9847
34.
Abdelsalam
,
A.
,
Cem
,
S.
, and
Pereyra
,
E.
,
2016
, “
New Dimensionless Number for Gas-Liquid Flow in Pipes
,”
Int. J. Multiphase Flow
,
81
, pp. 15–19.
You do not currently have access to this content.