Abstract

The mercury intrusion technique is a crucial in-lab method to investigate the porous medium properties. The potentiality of mercury intrusion data has not been explored significantly in the traditional interpretation. Thus, a hierarchical statistical model that not only captures the quantitative relationship between petrophysical properties but also accounts for different geological members is developed to interpret mercury intrusion data. This multilevel model is established from almost 800 samples with specific geological characteristics. We distinguish the fixed effects and the random effects in this mixed model. The overall connection between the selected petrophysical parameters is described by the fixed effects at a higher level, while variations due to different geological members are accommodated as the random effects at a lower level. The selected petrophysical parameters are observed through hypothesis testing and model selection. In this case study, five petrophysical parameters are selected into the model. Essential visualizations are also provided to assist the interpretations of the probabilistically model. The final model reveals the quantitative relationship between permeability and other petrophysical properties in each member and the order of relative importance for each property. With this studied relationship and advanced model, the geological reservoir simulation can be greatly detailed and accurate in the future.

References

1.
Scheidt
,
C.
,
Li
,
L.
, and
Caers
,
J.
,
2018
,
Quantifying Uncertainty in Subsurface Systems
, Vol.
236
,
John Wiley & Sons
,
New York
.
2.
Zou
,
C.
,
Yang
,
Z.
,
Zhu
,
G.
,
Tao
,
S.
,
Zhu
,
R.
,
Yuan
,
X.
, and
Cai
,
B.
,
2019
, “
Establishment and Practice of Unconventional Oil and Gas Geology
,”
Acta Geol. Sin.
,
93
(
1
), pp.
12
23
10.19762/j.cnki.dizhixuebao.2019002.
(In Chinese)
.
3.
Bryant
,
S.
,
Cade
,
C.
, and
Mellor
,
D.
,
1993
, “
Permeability Prediction From Geologic Models
,”
AAPG Bull.
,
77
(
8
), pp.
1338
1350
. 10.1306/bdff8e84-1718-11d7-8645000102c1865d
4.
Gelman
,
A.
, and
Hill
,
J.
,
2006
,
Data Analysis Using Regression and Multilevel/Hierarchical Models
,
Cambridge University Press
,
New York
.
5.
Fisher
,
R. A.
,
1919
, “
XV—The Correlation Between Relatives on the Supposition of Mendelian Inheritance
,”
Earth Environ. Sci. Trans. R. Soc. Edinburgh
,
52
(
2
), pp.
399
433
. 10.1017/S0080456800012163
6.
Van Vleck
,
L. D.
,
1998
, “
Charles Roy Henderson, 1911–1989: A Brief Biography
,”
J. Anim. Sci.
,
76
(
12
), pp.
2959
2961
. 10.2527/1998.76122959x
7.
Stuart
,
A.
,
Ord
,
K.
, and
Arnold
,
S.
,
1994
,
Kendall's Advanced Theory of Statistics, Classical Inference and the Linear Model
, 6th ed., Vol.
2A
,
Wiley
,
Chichester
.
8.
R Core Team
,
2018
,
R: A Language and Environment for Statistical Computing
,
R Foundation for Statistical Computing
,
Vienna, Austria
, URL https://www.R-project.org/.
9.
Shiqian
,
X.
,
Yuyao
,
L.
,
Yu
,
Z.
,
Sen
,
W.
, and
Qihong
,
F.
,
2020
, “
A History Matching Framework to Characterize Fracture Network and Reservoir Properties in Tight Oil
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042902
. 10.1115/1.4044767
10.
Ramm
,
M.
, and
Bjørlykke
,
K.
,
1994
, “
Porosity/Depth Trends in Reservoir Sandstones: Assessing the Quantitative Effects of Varying Pore-Pressure, Temperature History and Mineralogy, Norwegian Shelf Data
,”
Clay Miner.
,
29
(
4
), pp.
475
490
. 10.1180/claymin.1994.029.4.07
11.
Fan
,
Z.
,
Zhang
,
Y.
, and
Yang
,
D. T.
,
2016
, “
Estimation of Three-Phase Relative Permeabilities for a Water-Alternating-Gas Process by Use of an Improved Ensemble Randomized Maximum-Likelihood Algorithm
,”
SPE Reservoir Eval. Eng.
,
19
(
4
), pp.
683
693
. 10.2118/180931-PA
12.
Wantawin
,
M.
,
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2017
, “
An Iterative Work Flow for History Matching by Use of Design of Experiment, Response-Surface Methodology, and Markov Chain Monte Carlo Algorithm Applied to Tight Oil Reservoirs
,”
SPE Reservoir Eval. Eng.
,
20
(
3
), pp.
613
626
. 10.2118/185181-PA
13.
Zhang
,
Y.
,
He
,
J.
,
Yang
,
C.
,
Xie
,
J.
,
Fitzmorris
,
R.
, and
Wen
,
X. H.
,
2018
, “
A Physics-Based Data-Driven Model for History Matching, Prediction, and Characterization of Unconventional Reservoirs
,”
SPE J.
,
23
(
4
), pp.
1105
1125
. 10.2118/191126-pa
14.
Zhang
,
Y.
,
Fan
,
Z.
,
Yang
,
D.
,
Li
,
H.
, and
Patil
,
S.
,
2017
, “
Simultaneous Estimation of Relative Permeability and Capillary Pressure for PUNQ-S3 Model With a Damped Iterative-Ensemble-Kalman-Filter Technique
,”
SPE J.
,
22
(
3
), pp.
971
984
. 10.2118/177846-PA
15.
Blunt
,
M.
,
King
,
M. J.
, and
Scher
,
H.
,
1992
, “
Simulation and Theory of Two-Phase Flow in Porous Media
,”
Phys. Rev. A
,
46
(
12
), pp.
76
80
. 10.1103/PhysRevA.46.7680
16.
Lapierre
,
C.
,
Leroueil
,
S.
, and
Locat
,
J.
,
1990
, “
Mercury Intrusion and Permeability of Louiseville Clay
,”
Canadian Geotech. J.
,
27
(
6
), pp.
761
773
. 10.1139/t90-090
17.
Al Hinai
,
A.
,
Rezaee
,
R.
,
Saeedi
,
A.
, and
Lenormand
,
R.
,
2013
, “
Permeability Prediction From Mercury Injection Capillary Pressure: An Example From the Perth Basin, Western Australia
,”
APPEA J.
,
53
(
1
), pp.
31
36
. 10.1071/AJ12003
18.
Clarkson
,
C. R.
,
Wood
,
J.
,
Burgis
,
S.
,
Aquino
,
S.
, and
Freeman
,
M.
,
2012
, “
Nanopore-Structure Analysis and Permeability Predictions for a Tight Gas Siltstone Reservoir by Use of Low-Pressure Adsorption and Mercury-Intrusion Techniques
,”
SPE Reservoir Eval. Eng.
,
15
(
06
), pp.
648
661
. 10.2118/155537-PA
19.
Nooruddin
,
H. A.
,
Anifowose
,
F.
, and
Abdulraheem
,
A.
,
2014
, “
Using Soft Computing Techniques to Predict Corrected Air Permeability Using Thomeer Parameters, Air Porosity and Grain Density
,”
Comput. Geosci.
,
64
, pp.
72
80
. 10.1016/j.cageo.2013.11.007
20.
Gao
,
H.
, and
Li
,
H. A.
,
2016
, “
Pore Structure Characterization, Permeability Evaluation and Enhanced Gas Recovery Techniques of Tight Gas Sandstones
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
536
547
. 10.1016/j.jngse.2015.12.018
21.
Liu
,
G.
,
Bai
,
Y.
,
Gu
,
D.
,
Lu
,
Y.
, and
Yang
,
D.
,
2018
, “
Determination of Static and Dynamic Characteristics of Microscopic Pore-Throat Structure in a Tight Oil-Bearing Sandstone Formation
,”
AAPG Bull.
,
102
(
9
), pp.
1867
1892
. 10.1306/0108181613217061
22.
Liu
,
G.
,
Yin
,
H.
,
Lan
,
Y.
,
Fei
,
S.
, and
Yang
,
D.
,
2020
, “
Experimental Determination of Dynamic Pore-Throat Structure Characteristics in a Tight Gas Sandstone Formation With Consideration of Effective Stress
,”
Marine Petroleum Geol.
,
113
, pp.
104
170
. 10.1016/j.marpetgeo.2019.104170
You do not currently have access to this content.