Abstract

The application of wellbore strengthening treatment has less effect on shale formations. Several numerical studies were developed to describe the mechanism, which promoted the development of wellbore strengthening theory. Previous studies explored the mechanism mainly by considering the seepage flow. Therefore, multi-field coupled models were established to analyze the solute transmission, thermal convection, and heat conduction on wellbore strengthening by introducing the theory of multi-field coupling into physical model. First, the fracture width distribution and wellbore tangential stress were investigated to research the interaction of thermal and chemical effects with different gradients. Then, the concrete mechanism of temperature and solute concentration gradient was analyzed based on the distribution of pore pressure and stress field. Results show that the prediction of hoop stress and fracture aperture may not be accurate without considering the influence of solute transfer, thermal convection, and heat conduction, because stress state is mainly affected by temperature field and the pore pressure varies greatly under different chemical gradients. Additionally, the lower temperature and larger solute concentration improve the wellbore strengthening effect of drilling fluid.

References

1.
Cook
,
J.
,
Growcock
,
F.
,
Guo
,
Q.
,
Hodder
,
M.
, and
van Oort
,
E.
,
2011
, “
Stabilizing the Wellbore to Prevent Lost Circulation
,”
Oilfield Rev.
,
23
(
4
), pp.
26
35
.
2.
Lavrov
,
A.
,
2016
,
Lost Circulation: Mechanisms and Solutions
,
Gulf Professional Publishing
,
Oxford, UK
.
3.
Feng
,
Y.
, and
Gray
,
K. E.
,
2017
, “
Review of Fundamental Studies on Lost Circulation and Wellbore Strengthening
,”
J. Pet. Sci. Eng.
,
152
, pp.
511
522
. 10.1016/j.petrol.2017.01.052
4.
Van Oort
,
E.
,
Friedheim
,
J. E.
,
Pierce
,
T.
, and
Lee
,
J.
,
2011
, “
Avoiding Losses in Depleted and Weak Zones by Constantly Strengthening Wellbores
,”
SPE Drill. Completion
,
26
(
04
), pp.
519
530
. 10.2118/125093-PA
5.
Dupriest
,
F. E.
,
2005
, “
Fracture Closure Stress (FCS) and Lost Returns Practices
,”
SPE/IADC Drilling Conference
,
Amsterdam, Netherlands
,
Feb. 23–25
, SPE Paper No. SPE-92192-MS.
6.
Alberty
,
M. W.
, and
McLean
,
M. R.
,
2004
, “
A Physical Model for Stress Cages
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Sept. 26–29
, SPE Paper No. SPE-90493-MS.
7.
Darvishpour
,
A.
,
Seifabad
,
M. C.
,
Wood
,
D. A.
, and
Ghorbani
,
H.
,
2019
, “
Wellbore Stability Analysis to Determine the Safe mud Weight Window for Sandstone Layers
,”
Pet. Explor. Dev.
,
46
(
5
), pp.
1031
1038
. 10.1016/S1876-3804(19)60260-0
8.
Roshan
,
H.
, and
Oeser
,
M.
,
2012
, “
A non-Isothermal Constitutive Model for Chemically Active Elastoplastic Rocks
,”
Rock Mech. Rock Eng.
,
45
(
3
), pp.
361
374
. 10.1007/s00603-011-0204-z
9.
Zeynali
,
M. E.
,
2012
, “
Mechanical and Physico-Chemical Aspects of Wellbore Stability During Drilling Operations
,”
J. Pet. Sci. Eng.
,
82
, pp.
120
124
. 10.1016/j.petrol.2012.01.006
10.
Dupriest
,
F. E.
,
Smith
,
M. V.
,
Zeilinger
,
S. C.
, and
Shoykhet
,
N.
,
2008
, “
Method To Eliminate Lost Returns and Build Integrity Continuously With High-Filtration-Rate Fluid
,”
IADC/SPE Drilling Conference
,
Orlando, FL
,
Mar. 4–6
, SPE Paper No. SPE-112656-MS.
11.
Guo
,
Q.
,
Cook
,
J.
,
Way
,
P.
,
Ji
,
L.
, and
Friedheim
,
J. E.
,
2014
, “
A Comprehensive Experimental Study on Wellbore Strengthening
,”
IADC/SPE Drilling Conference and Exhibition
,
Fort Worth, TX
,
Mar. 4–6
, SPE Paper No. SPE-167957-MS.
12.
Feng
,
Y.
, and
Gray
,
K. E.
,
2016
, “
A Parametric Study for Wellbore Strengthening
,”
J. Nat. Gas Sci. Eng.
,
30
, pp.
350
363
. 10.1016/j.jngse.2016.02.045
13.
Feng
,
Y.
,
Jones
,
J. F.
, and
Gray
,
K. E.
,
2016
, “
A Review on Fracture-Initiation and-Propagation Pressures for Lost Circulation and Wellbore Strengthening
,”
SPE Drill. Completion
,
31
(
02
), pp.
134
144
. 10.2118/181747-PA
14.
Zhao
,
P.
,
Santana
,
C. L.
,
Feng
,
Y.
, and
Gray
,
K. E.
,
2017
, “
Mitigating Lost Circulation: A Numerical Assessment of Wellbore Strengthening
,”
J. Pet. Sci. Eng.
,
157
, pp.
657
670
. 10.1016/j.petrol.2017.07.052
15.
Ravaji
,
B.
,
Mashadizade
,
S.
, and
Hashemi
,
A.
,
2018
, “
Introducing Optimized Validated Meshing System for Wellbore Stability Analysis Using 3D Finite Element Method
,”
J. Nat. Gas Sci. Eng.
,
53
, pp.
74
82
. 10.1016/j.jngse.2018.02.031
16.
Ekbote
,
S.
, and
Abousleiman
,
Y.
,
2005
, “
Porochemothermoelastic Solution for an Inclined Borehole in a Transversely Isotropic Formation
,”
J. Eng. Mech.
,
131
(
5
), pp.
522
533
. 10.1061/(ASCE)0733-9399(2005)131:5(522)
17.
Ghassemi
,
A.
,
Tao
,
Q.
, and
Diek
,
A.
,
2009
, “
Influence of Coupled Chemo-Poro-Thermoelastic Processes on Pore Pressure and Stress Distributions Around a Wellbore in Swelling Shale
,”
J. Pet. Sci. Eng.
,
67
(
1–2
), pp.
57
64
. 10.1016/j.petrol.2009.02.015
18.
Zhou
,
X.
, and
Ghassemi
,
A.
,
2009
, “
Finite Element Analysis of Coupled Chemo-Poro-Thermo-Mechanical Effects Around a Wellbore in Swelling Shale
,”
Int. J. Rock Mech. Mining Sci.
,
46
(
4
), pp.
769
778
. 10.1016/j.ijrmms.2008.11.009
19.
Ghassemi
,
A.
, and
Diek
,
A.
,
2002
, “
Porothermoelasticity for Swelling Shales
,”
J. Pet. Sci. Eng.
,
34
(
1
), pp.
123
135
. 10.1016/S0920-4105(02)00159-6
20.
Wang
,
Z.
,
Bai
,
Y.
,
Zhang
,
H.
, and
Liu
,
Y.
,
2019
, “
Investigation on Gelation Nucleation Kinetics of Waxy Crude Oil Emulsions by Their Thermal Behavior
,”
J. Pet. Sci. Eng.
,
181
, p.
106230
. 10.1016/j.petrol.2019.106230
21.
Kanfar
,
M. F.
,
Chen
,
Z.
, and
Rahman
,
S. S.
,
2017
, “
Analyzing Wellbore Stability in Chemically-Active Anisotropic Formations Under Thermal, Hydraulic, Mechanical and Chemical Loadings
,”
J. Nat. Gas Sci. Eng.
,
41
, pp.
93
111
. 10.1016/j.jngse.2017.02.006
22.
Bader
,
S.
, and
Kooi
,
H.
,
2005
, “
Modelling of Solute and Water Transport in Semi-Permeable Clay Membranes: Comparison With Experiments
,”
Adv. Water Resour.
,
28
(
3
), pp.
203
214
. 10.1016/j.advwatres.2004.11.001
23.
Rui
,
Z.
,
Cui
,
K.
,
Wang
,
X.
,
Lu
,
J.
,
Chen
,
G.
,
Ling
,
K.
, and
Patil
,
S.
,
2018
, “
A Quantitative Framework for Evaluating Unconventional Well Development
,”
J. Pet. Sci. Eng.
,
166
, pp.
900
905
. 10.1016/j.petrol.2018.03.090
24.
Yin
,
S.
,
Towler
,
B. F.
,
Dusseault
,
M. B.
, and
Rothenburg
,
L.
,
2010
, “
Fully Coupled THMC Modeling of Wellbore Stability With Thermal and Solute Convection Considered
,”
Transp. Porous Media
,
84
(
3
), pp.
773
798
. 10.1007/s11242-010-9540-9
25.
Yang
,
P.
,
Chen
,
M.
,
Jin
,
Y.
,
Hou
,
B.
,
Qiu
,
K.
,
Liang
,
C.
, and
Zhang
,
W.
,
2011
, “
Mechanical-Thermal-Chemical Coupled Research of Wellbore Stability in Jabung Oil Field, Indonesia
,”
Adv. Mater. Res., Indonesia
,
402
, pp.
709
714
. 10.4028/www.scientific.net/AMR.402.709
26.
Whitfill
,
D.
,
Jamison
,
D.
,
Wang
,
M.
, and
Angove-Rogers
,
A.
,
2007
, “
Preventing Lost Circulation Requires Planning Ahead
,”
International Oil Conference and Exhibition
,
Veracruz, MX
,
June 27–30
, SPE Paper No. SPE-108647-MS.
27.
Wang
,
H.
,
Soliman
,
M. Y.
, and
Towler
,
B. F.
,
2009
, “
Investigation of Factors for Strengthening a Wellbore by Propping Fractures
,”
IADC/SPE Drilling Conference
,
Orlando, FL
,
Mar. 4–6
, SPE Paper No. SPE-112629-MS.
28.
Wang
,
H.
,
Towler
,
B. F.
, and
Soliman
,
M. Y.
,
2007
, “
Fractured Wellbore Stress Analysis: Sealing Cracks to Strengthen a Wellbore
,”
SPE/IADC Drilling Conference
,
Amsterdam, Netherlands
,
Feb. 20–22
, SPE Paper No. SPE-104947-MS.
29.
Wang
,
H.
,
Towler
,
B. F.
, and
Soliman
,
M. Y.
,
2007
, “
Near Wellbore Stress Analysis and Wellbore Strengthening for Drilling Depleted Formations
,”
SPE Rocky Mountain Oil & Gas Technology Symposium
,
Denver, CO
,
Apr. 16–18
, SPE Paper No. SPE-102719-MS.
30.
Cui
,
L.
,
Cheng
,
A. H.
, and
Abousleiman
,
Y.
,
1997
, “
Poroelastic Solution for an Inclined Borehole
,”
ASME J. Appl. Mech.
,
64
(
1
), pp.
32
38
. 10.1115/1.2787291
31.
Chang
,
J. H.
, and
Becker
,
E. B.
,
1992
, “
Finite Element Calculation of Energy Release Rate for 2-D Rubbery Material Problems With Non-Conservative Crack Surface Tractions
,”
Int. J. Numer. Methods Eng.
,
33
(
5
), pp.
907
927
. 10.1002/nme.1620330503
32.
Feng
,
Y.
,
Arlanoglu
,
C.
,
Podnos
,
E.
,
Becker
,
E.
, and
Gray
,
K. E.
,
2015
, “
Finite Element Studies of Hoop-Stress Enhancement for Wellbore Strengthening
,”
SPE Drill. Completion
,
30
(
1
), pp.
38
51
. 10.2118/168001-PA
33.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
,
1985
,
The Stress Analysis of Cracks Handbook
,
Paris Productions/Del Research
,
New York
.
34.
Wang
,
Z.
,
Yang
,
M.
, and
Chen
,
Y.
,
2019
, “
Numerical Modeling and Analysis of Induced Thermal Stress for a Non-Isothermal Wellbore Strengthening Process
,”
J. Pet. Sci. Eng.
,
175
, pp.
173
183
. 10.1016/j.petrol.2018.12.019
35.
Zhang
,
L.
,
Zhang
,
S.
,
Jiang
,
W.
,
Wang
,
Z.
, and
Wang
,
L.
,
2018
, “
An Analytical Model of Wellbore Strengthening Considering Complex Distribution of Cleat System
,”
J. Nat. Gas Sci. Eng.
,
60
, pp.
77
91
. 10.1016/j.jngse.2018.09.017
36.
Zhong
,
R.
,
Miska
,
S.
,
Yu
,
M.
,
Ozbayoglu
,
E.
, and
Takach
,
N.
,
2018
, “
An Integrated Fluid Flow and Fracture Mechanics Model for Wellbore Strengthening
,”
J. Pet. Sci. Eng.
,
167
, pp.
702
715
. 10.1016/j.petrol.2018.04.052
37.
Zhong
,
R.
,
Miska
,
S.
, and
Yu
,
M.
,
2017
, “
Parametric Study of Controllable Parameters in Fracture-Based Wellbore Strengthening
,”
J. Nat. Gas Sci. Eng.
,
43
, pp.
13
21
. 10.1016/j.jngse.2017.03.018
38.
Zhong
,
R.
,
Miska
,
S.
, and
Yu
,
M.
,
2017
, “
Modeling of Near-Wellbore Fracturing for Wellbore Strengthening
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
475
484
. 10.1016/j.jngse.2017.01.009
39.
Bhushan
,
A.
,
Panda
,
S. K.
,
Singh
,
S. K.
, and
Khan
,
D.
,
2015
, “
Finite Element Evaluation of J-Integral in 3D for Nuclear Grade Graphite Using COMSOL Multiphysics
,”
COMSOL Conference
,
Pune, India
,
Oct. 29–30
, pp.
1
7
.
You do not currently have access to this content.