Abstract

This paper deals with an experimental investigation of a novel and simple reverse flow combustor, operated stably with a liquid fuel (ethanol) for heat release intensities ranging from 16 to 25 MW/(m3·atm) with very low NOx and CO emissions. The liquid fuel is injected coaxially with the air jet along the centerline of the combustor. The high velocity air annulus helps in primary breakup of the liquid fuel jet. Air injection along the combustor centerline results in a strong peripheral vortex inside the combustor leading to enhanced product gas recirculation, internal preheating of the reactants, and stabilization of reaction zones. Single-digit NOx emissions were obtained for both coaxial fuel injection (non-premixed) and a premixed–prevaporized (PP) cases for all operating conditions. CO emissions for both the modes were less than 100 ppm (ϕ < 0.75). CH* chemiluminescence images revealed two distinct flame structures for coaxial fuel injection case. A single flame structure for PP case was observed extending from the injector exit to the bottom of the combustor. The instantaneous (spatially averaged) CH* intensity fluctuations were significantly lower for the PP case as compared to the coaxial fuel injection case.

References

1.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2013
,
Gas Turbine Emissions
,
Cambridge
.
2.
Lefebvre
,
A. H.
,
1999
,
Gas Turbine Combustion
, 2nd ed.,
Taylor & Francis
,
London
.
3.
Rafidi
,
N.
,
Blasiak
,
W.
, and
Gupta
,
A. K.
,
2008
, “
High-Temperature Air Combustion Phenomena and Its Thermodynamics
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
023001
. 10.1115/1.2795757
4.
Gupta
,
A. K.
,
Bolz
,
S.
,
Hasegawa
,
T.
, and
Arfi
,
1999
, “
Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission
,”
ASME J. Energy Resour. Technol.
,
121
(
3
), pp.
209
216
. 10.1115/1.2795984
5.
Cavaliere
,
A.
, and
de Joannon
,
M.
,
2004
, “
MILD Combustion
,”
Prog. Energy Combust. Sci.
,
30
(
4
), pp.
329
366
. 10.1016/j.pecs.2004.02.003
6.
Wunning
,
J. A.
, and
Wunning
,
J. G.
,
1997
, “
Flameless Oxidation to Reduce Thermal NO Formation
,”
Prog. Energy Combust. Sci.
,
23
(
1
), pp.
81
94
. 10.1016/S0360-1285(97)00006-3
7.
Arghode
,
V. K.
,
2011
, “
Development of Colorless Distributed Combustion for Gas Turbine Application
,”
Ph.D. thesis
,
University of Maryland, College Park
.
8.
Weber
,
R.
, and
Smart
,
J. P.
,
2005
, “
On the (MILD) Combustion of Gaseous, Liquid, and Solid Fuels in High Temperature Preheated Air
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2623
2629
. 10.1016/j.proci.2004.08.101
9.
Ahmed E. E.
,
K.
,
Gupta
,
A. K.
,
Bryden
,
K. M.
, and
Lee
,
S. C.
,
2012
, “
Mixture Preparation Effects on Distributed Combustion for Gas Turbine Applications
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
032201
.
10.
Andre A.V.
,
P.
,
Rao
,
A. G.
, and
Dirk J.E.M.
,
R.
,
2018
, “
Flameless Combustion and its Potential Towards Gas Turbines
,”
Prog. Energy Combust. Sci.
,
69
, pp.
28
62
. 10.1016/j.pecs.2018.06.002
11.
Derudi
,
M.
, and
Rota
,
R.
,
2011
, “
Experimental Study of the MILD Combustion of Liquid Hydrocarbons
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3325
3332
. 10.1016/j.proci.2010.06.120
12.
Reddy
,
V. M.
,
Sawant
,
D.
,
Trivedi
,
D.
, and
Kumar
,
S.
,
2013
, “
Studies on a Liquid Fuel Based Two Stage Flameless Combustor
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3319
3326
. 10.1016/j.proci.2012.06.028
13.
Lokini
,
P.
,
Roshan
,
D. K.
, and
Kushari
,
A.
,
2019
, “
Influence of Swirl and Primary Zone Airflow Rate on the Emissions and Performance of a Liquid-Fueled Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062009
. 10.1115/1.4042410
14.
Arghode
,
V. K.
,
Khalil
,
A.
, and
Gupta
,
A. K.
,
2012
, “
Fuel Dilution and Liquid Fuel Operational Effects on Ultra-High Thermal Intensity Distributed Combustor
,”
Appl. Energy
,
95
, pp.
132
138
. 10.1016/j.apenergy.2012.02.020
15.
Sharma
,
P.
,
Jain
,
N.
, and
Arghode
,
V. K.
,
2019
, “
Investigation of Low Emission Liquid Fueled Reverse Cross Flow Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102202
. 10.1115/1.4043437
16.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2010
, “
Effect of Flow Field for Colorless Distributed Combustion (CDC) for Gas Turbine Combustion
,”
Appl. Energy
,
87
(
5
), pp.
1631
1640
. 10.1016/j.apenergy.2009.09.032
17.
Arghode
,
V. K.
,
Gupta
,
A. K.
, and
Bryden
,
K. M.
,
2012
, “
High Intensity Colorless Distributed Combustion for Ultra-Low Emissions and Enhanced Performance
,”
Appl. Energy
,
92
, pp.
822
830
. 10.1016/j.apenergy.2011.08.039
18.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2011
, “
Development of High Intensity CDC Combustor for Gas Turbine Engines
,”
Appl. Energy
,
88
(
3
), pp.
963
973
. 10.1016/j.apenergy.2010.07.038
19.
Arghode
,
V. K.
, and
Gupta
,
A. K.
,
2011
, “
Investigation of Reverse Flow Distributed Combustion for Gas Turbine Application
,”
Appl. Energy
,
88
(
4
), pp.
1096
1104
. 10.1016/j.apenergy.2010.10.039
20.
Lasheras
,
J.
, and
Hopfinger
,
E.
,
2000
, “
Liquid Jet Instability and Atomization in a Coaxial Gas Stream
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
275
308
. 10.1146/annurev.fluid.32.1.275
21.
Varga
,
C.
,
Lasheras
,
J.
, and
Hopfinger
,
E.
,
2003
, “
Initial Breakup of a Small-Diameter Liquid Jet by a High-Speed Gas Stream
,”
J. Fluid Mech.
,
497
, pp.
405
434
. 10.1017/S0022112003006724
22.
Gelfand
,
B. E.
,
1996
, “
Droplet Breakup Phenomena in Flows With Velocity lag
,”
Prog. Energy Combust. Sci.
,
22
(
3
), pp.
201
265
. 10.1016/S0360-1285(96)00005-6
23.
Mayer
,
W. O. H.
,
1994
, “
Coaxial Atmomization of a Round Liquid Jet in a High Speed Gas Stream: A Phenomenological Study
,”
Exp. Fluids
,
16
(
6
), pp.
401
410
. 10.1007/BF00202065
24.
Wu
,
P.-K.
,
Tseng
,
L.-K.
, and
Faeth
,
G. M.
,
1992
, “
Primary Breakup in Gas/Liquid Mixing Layers for Turbulent Liquids
,”
Atomization Spray.
,
2
(
3
), pp.
295
317
. 10.1615/AtomizSpr.v2.i3.60
25.
Rizk
,
N. K.
, and
Lefebvre
,
A. H.
,
1984
, “
Spray Charactersitics of Plain-Jet Airblast Atmoizers
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
634
638
. 10.1115/1.3239617
26.
Kumar
,
A.
, and
Sahu
,
S.
,
2018
, “
Liquid jet Breakup Unsteadiness in a Coaxial Air-Blast Atomizer
,”
Int. J. Spray Combust. Dyn.
,
10
(
3
), pp.
211
230
. 10.1177/1756827718760905
27.
Gopalakrishnan
,
P.
,
Bobba
,
M. K.
,
Radhakrishnan
,
A.
,
Neumeier
,
Y.
, and
Seitzman
,
J. M.
,
2007
, “
Characterization of the Reacting Flowfield in a Liquid-Fueled Stagnation Point Reverse Flow Combustor
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 8–11
.
28.
Gopalakrishnan
,
P.
,
Alison
,
P.
, and
Seitzman
,
J. M.
,
2007
, “
Effects of Fuel Injection and Mixing on NOx Performance of a Liquid-Fueled Stagnation Point Reverse Flow Combustor
”,
5th US Combustion Meeting
,
University of California at San Diego
,
CA
,
Mar. 25–28
.
29.
Crane
,
J.
,
Neumeier
,
Y.
,
Jagoda
,
J.
,
Seitzman
,
J.
, and
Zinn
,
B. T.
,
2006
, “
Stagnation Point Reverse-Flow Combustor Performance With Liquid Fuel Injection
”,
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona
,
Spain
,
May 8–11
.
30.
Bobba
,
M. K.
,
Gopalakrishnan
,
P.
,
Periagaram
and
Seitzman
,
J. M.
,
2007
, “
Product Recirculation and Mixing Studies in a Stagnation Point Reverse Flow Combustor
”,
45th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno
,
NV
,
Jan. 8–11
.
31.
Balakrishnan
,
A.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2016
, “
Combustion Characteristics of Partially Premixed Prevaporized Palm Methyl Ester and Jet a Fuel Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012202
. 10.1115/1.4031966
32.
Mahalegi
,
H. K. M.
, and
Mardani
,
A.
,
2019
, “
Investigation of Fuel Dilution in Ethanol Spray MILD Combustion
,”
Appl. Ther. Eng.
,
159
, p.
113898
. 10.1016/j.applthermaleng.2019.113898
33.
Carvajal-Mariscal
,
I.
et al
,
2013
, “
Evaluation of Ethanol as a Fuel for Gas Turbines
,”
ASME Power Conference
,
Boston, Massachusetts
,
July 29–Aug. 1
.
34.
Khushwaha
,
A. K.
,
2016
, “
Reverse Flow Colorless Combustor for Gas Turbine Engines
,”
M.Tech. thesis
,
IIT Kanpur
,
India
.
You do not currently have access to this content.