Abstract

In entrained flow gasifiers, the production of oxidic slag accompanies the gasification process. This slag forms a layer on the refractory walls, flows downwards gravitationally, and is collected in a water quench. Hence, the slag flow must be constant, since a slag blockage represents a worst-case-scenario. Crystallization of the slag increases slag viscosity, subsequently leading to a possible slag blockage. Therefore, crystallization processes in oxidic slags need to be understood and hence investigated. In this study, three artificial, coal ash related oxidic slag systems were analyzed on their crystallization behavior. Therefore, their melt behavior was investigated via hot-stage microscopy and differential thermal analysis (DTA). Additional thermochemical calculations were performed to predict crystallized phases. Subsequently, quenching experiments were conducted to generate supercooled crystallization in the slag samples. These samples were analyzed afterward via X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the morphologies of crystals were characterized/described. In-situ observations on crystallization growth were performed by using a confocal laser scanning microscope (CLSM). Finally, crystallized phases were compared with results obtained from thermochemical calculations, and the impact of kinetics on the distributed phases was discussed. The knowledge on the crystallization behavior of various phases can be transferred to other slag systems and can improve general crystallization predictions made by thermochemical calculations.

References

1.
Smil
,
V.
,
2004
,
World History and Energy, Encyclopedia of Energy
,
Elsevier
,
Amsterdam
, pp.
549
561
.
2.
Johne
,
P.
,
Kaindl
,
P.
,
Fendt
,
S.
, and
Spliethoff
,
H.
,
2018
,”
Fuel & Load-Flexible Entrained Flow Gasifier Operation & Applications: Flame Parameters & Flexible Burner
” 27th International Conference on the Impact of Fuel Quality on Power Production and the Environment
,
Lake Louise, Canada
,
Sept. 24–28
, p.
13
.
3.
Seebold
,
S.
,
Eberhard
,
M.
,
Wu
,
G.
,
Yazhenskikh
,
E.
,
Sergeev
,
D.
,
Kolb
,
T.
, and
Müller
,
M.
,
2017
, “
Thermophysical and Chemical Properties of Bioliq Slags
,”
Fuel
,
197
, pp.
596
604
. 10.1016/j.fuel.2017.02.027
4.
Eurling
,
J. Th. G. M.
, and
Ploeg
,
J. E. G.
,
1999
, “
Process Performance of the SCGP at Buggenum IGCC
,” Gasification Technologies Conference
,
San Francisco, CA
,
Oct. 18–20
, p.
21
.
5.
Vargas
,
S.
,
Frandsen
,
F. J.
, and
Dam-Johansen
,
K.
,
2001
, “
Rheological Properties of High-Temperature Melts of Coal Ashes and Other Silicates
,”
Prog. Energy Combust. Sci.
,
27
(
3
), pp.
237
429
. 10.1016/S0360-1285(00)00023-X
6.
Seebold
,
S.
,
2017
, “
The Influence of Crystallization on the Flow of Coal ash-Slags
,”
Fuel
,
187
, pp.
376
387
. 10.1016/j.fuel.2016.09.078
7.
Wu
,
G.
,
Yazhenskikh
,
E.
,
Hack
,
K.
,
Wosch
,
E.
, and
Müller
,
M.
,
2015
, “
Viscosity Model for Oxide Melts Relevant to Fuel Slags. Part 1: Pure Oxides and Binary Systems in the System SiO2–Al2O3–CaO–MgO–Na2O–K2O
,”
Fuel Process. Technol.
,
137
, pp.
93
103
. 10.1016/j.fuproc.2015.03.025
8.
Stam
,
A. F.
,
Livingston
,
W. R.
,
Brem
,
G.
, and
Cremers
,
K. J. M.
,
2010
, “
Review of Models and Tools for Slagging and Fouling Prediction for Biomass Co-Combustion
,” IEA Bioenergy Conference
, p.
12
.
9.
Kondratiev
,
A.
, and
Jak
,
E.
,
2001
, “
Review of Experimental Data and Modeling of the Viscosities of Fully Liquid Slags in the Al2O3-CaO-‘FeO’-SiO2 System
,”
Metall. Mater. Trans. B
,
32
(
6
), pp.
1015
1025
. 10.1007/s11663-001-0090-y
10.
Wu
,
G.
,
Seebold
,
S.
,
Yazhenskikh
,
E.
,
Tanner
,
J.
,
Hack
,
K.
, and
Müller
,
M.
,
2019
, “
Slag Mobility in Entrained Flow Gasifiers Optimized Using a New Reliable Viscosity Model of Iron Oxide-Containing Multicomponent Melts
,”
Appl. Energy
,
236
, pp.
837
849
. 10.1016/j.apenergy.2018.11.100
11.
Zhuangzhuang
,
L.
,
Ling
,
Z.
,
Annelies
,
M.
,
Bart
,
B.
, and
Muxing
,
G.
,
2018
, “
Non-Newtonian Behavior of Solid-Bearing Silicate Melts: An Experimental Study
,”
J. Non-Cryst. Solids
,
493
, pp.
65
72
. 10.1016/j.jnoncrysol.2018.04.042
12.
Seebold
,
S.
,
2017
,
Über den Einfluss der Kristallisation auf das Fließverhalten Oxidischer Schmelzen
,
Fakultät für Maschinenwesen, Rheinisch-Westfälische Technische Hochschule Aachen
,
Aachen
, p.
168
.
13.
Schwitalla
,
D. H.
,
Bronsch
,
A. M.
,
Klinger
,
M.
,
Guhl
,
S.
, and
Meyer
,
B.
,
2017
, “
Analysis of Solid Phase Formation and its Impact on Slag Rheology
,”
Fuel
,
203
, pp.
932
941
. 10.1016/j.fuel.2017.04.092
14.
Zhuangzhuang
,
L.
,
Liugang
,
C.
,
Guo
,
M.
, and
Blanpain
,
B.
,
2018
, “
Effect of Crystallization on the Abrupt Viscosity Increase During the Slag Cooling Process
,”
ISIJ Int.
,
58
, pp.
1972
1978
. 10.2355/isijinternational.ISIJINT-2018-176
15.
Zhuangzhuang
,
L.
,
Annelies
,
M.
,
Bart
,
B.
, and
Muxing
,
G.
,
2018
, “
Rheological Transitions of the Solid-Bearing Slag During Cooling Process
,”
Metall. Mater. Trans. B
,
49
(
5
), pp.
2649
2657
. 10.1007/s11663-018-1324-6
16.
Jones
,
P. T.
,
Desmet
,
D.
,
Guo
,
M.
,
Durinck
,
D.
,
Verhaeghe
,
F.
,
Van Dyck
,
J.
,
Liu
,
J.
,
Blanpain
,
B.
, and
Wollants
,
P.
,
2007
, “
Using Confocal Scanning Laser Microscopy for the in Situ Study of High-Temperature Behaviour of Complex Ceramic Materials
,”
J. Eur. Ceram. Soc.
,
27
(
12
), pp.
3497
3507
. 10.1016/j.jeurceramsoc.2007.01.022
17.
Melchior
,
T.
,
2010
,
Untersuchungen zur Oberflächenspannung von Kohleschlacken Unter Vergaserbedingungen
,
Fakultät für Maschinenwesen, Rheinisch-Westfälische Technische Hochschule
,
Aachen
, p.
270
.
18.
Hack
,
T. J. K.
,
Müller
,
M.
,
Yazhenskikh
,
E.
, and
Wu
,
G.
,
2012
, “
A Novel Thermodynamic Database for Slag Systems and Refractory Materials
,”
Proceedings of the 5th International Congress on the Science and Technology of Steelmaking
,
Dresden, Germany
,
Oct. 1–3
.
19.
Dohrn
,
M.
,
2018
, “
Influence of Load Changes on the Deposit Behavior During Combustion of Five Different Hard Coals
,”
Energy Fuels
,
32
(
3
), pp.
3985
3994
. 10.1021/acs.energyfuels.7b04020
You do not currently have access to this content.