Abstract

Although there are studies on optimizing organic Rankine cycles (ORCs) through individual components, in this study, for the first time, both evaporator and turbine designs are included in a multiobjective optimization. Twenty-eight working fluids are used to find optimum cycle parameters for three source temperatures (90, 120, and 150 °C). A mean-line radial inflow turbine model is used. Nondominated Sorting Genetic Algorithm II is utilized to minimize total evaporator area per net power output and maximize performance factor simultaneously. The technique for Order Preference by Similarity to Ideal Situation (TOPSIS) procedure is followed to obtain ideal solutions. A group of working fluids with highest net power output is determined for each heat source temperature. Optimized geometric parameters of the evaporator vary in a narrow range independent of the working fluid and the source temperature, but evaporator PPTD and degree of superheating depend on the working fluid. The specific speed, the pressure ratio through the turbine, and the nozzle inlet-to-outlet radius ratio do not change significantly with cycle conditions.

References

1.
Tumen Ozdil
,
N. F.
,
Segmen
,
M. R.
, and
Tantekin
,
A.
,
2015
, “
Thermodynamic Analysis of an Organic Rankine Cycle (ORC) Based on Industrial Data
,”
Appl. Therm. Eng.
,
91
, pp.
43
52
. 10.1016/j.applthermaleng.2015.07.079
2.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy. Rev.
,
14
(
9
), pp.
3059
3067
. 10.1016/j.rser.2010.07.006
3.
Sauret
,
E.
, and
Rowlands
,
A. S.
,
2011
, “
Candidate Radial-Inflow Turbines and High-Density Working Fluids for Geothermal Power Systems
,”
Energy
,
36
(
7
), pp.
4460
4467
. 10.1016/j.energy.2011.03.076
4.
Guo
,
T.
,
Wang
,
H.
, and
Zhang
,
S.
,
2010
, “
Fluid Selection for a Low-Temperature Geothermal Organic Rankine Cycle by Energy and Exergy
,”
2010 Asia-Pacific Power and Energy Engineering Conference
,
Chendgu, China
,
Mar. 28–31
, pp.
1
5
.
5.
Eyidogan
,
M.
,
Canka Kilic
,
F.
,
Kaya
,
D.
,
Coban
,
V.
, and
Cagman
,
S.
,
2016
, “
Investigation of Organic Rankine Cycle (ORC) Technologies in Turkey From the Technical and Economic Point of View
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
885
895
. 10.1016/j.rser.2015.12.158
6.
Guzović
,
Z.
,
Lončar
,
D.
, and
Ferdelji
,
N.
,
2010
, “
Possibilities of Electricity Generation in the Republic of Croatia by Means of Geothermal Energy
,”
Energy
,
35
(
8
), pp.
3429
3440
. 10.1016/j.energy.2010.04.036
7.
Yari
,
M.
,
Mehr
,
A. S.
,
Zare
,
V.
,
Mahmoudi
,
S. M.
, and
Rosen
,
M. A.
,
2015
, “
Exergoeconomic Comparison of TLC (Trilateral Rankine Cycle), ORC (Organic Rankine Cycle) and Kalina Cycle Using a Low Grade Heat Source
,”
Energy
,
83
, pp.
712
722
. 10.1016/j.energy.2015.02.080
8.
Campos Rodríguez
,
C. E.
,
Escobar Palacio
,
J. C.
,
Venturini
,
O. J.
,
Silva Lora
,
E. E.
,
Cobas
,
V. M.
,
Marques Dos Santos
,
D.
,
Lofrano Dotto
,
F. R.
, and
Gialluca
,
V.
,
2013
, “
Exergetic and Economic Comparison of ORC and Kalina Cycle for Low Temperature Enhanced Geothermal System in Brazil
,”
Appl. Therm. Eng.
,
52
(
1
), pp.
109
119
. 10.1016/j.applthermaleng.2012.11.012
9.
Zhai
,
H.
,
Shi
,
L.
, and
An
,
Q.
,
2014
, “
Influence of Working Fluid Properties on System Performance and Screen Evaluation Indicators for Geothermal ORC (Organic Rankine Cycle) System
,”
Energy
,
74
(
C
), pp.
2
11
. 10.1016/j.energy.2013.12.030
10.
Yang
,
M. H.
, and
Yeh
,
R. H.
,
2015
, “
Thermodynamic and Economic Performances Optimization of an Organic Rankine Cycle System Utilizing Exhaust Gas of a Large Marine Diesel Engine
,”
Appl. Energy
,
149
, pp.
1
12
. 10.1016/j.apenergy.2015.03.083
11.
Yang
,
M. H.
, and
Yeh
,
R. H.
,
2016
, “
Economic Performances Optimization of an Organic Rankine Cycle System With Lower Global Warming Potential Working Fluids in Geothermal Application
,”
Renewable Energy
,
85
, pp.
1201
1213
. 10.1016/j.renene.2015.07.067
12.
Sui
,
H.
,
Wu
,
J.
,
He
,
L.
, and
Li
,
X.
,
2017
, “
Conversion of Low-Grade Heat From FCC Absorption-Stabilization System to Electricity by Organic Rankine Cycles: Simulation and Optimization
,”
J. Eng. Thermophys.
,
26
(
2
), pp.
216
233
. 10.1134/S1810232817020072
13.
Koroneos
,
C.
,
Polyzakis
,
A.
,
Xydis
,
G.
,
Stylos
,
N.
, and
Nanaki
,
E.
,
2017
, “
Exergy Analysis for a Proposed Binary Geothermal Power Plant in Nisyros Island, Greece
,”
Geothermics
,
70
, pp.
38
46
. 10.1016/j.geothermics.2017.06.004
14.
Dumont
,
O.
,
Dickes
,
R.
,
De Rosa
,
M.
,
Douglas
,
R.
, and
Lemort
,
V.
,
2018
, “
Technical and Economic Optimization of Subcritical, Wet Expansion and Transcritical Organic Rankine Cycle (ORC) Systems Coupled With a Biogas Power Plant
,”
Energy Convers. Manage.
,
157
, pp.
294
306
. 10.1016/j.enconman.2017.12.022
15.
Wang
,
Y.
,
Zhao
,
J.
,
Wang
,
Y.
, and
An
,
Q.
,
2017
, “
Multi-Objective Optimization and Grey Relational Analysis on Configurations of Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
114
, pp.
1355
1363
. 10.1016/j.applthermaleng.2016.10.075
16.
Shah
,
R. K.
, and
Sekulic
,
D.
,
2003
,
Fundamentals of Heat Exchanger Design
,
John Wiley & Sons Inc.
,
NJ
.
17.
Walraven
,
D.
,
Laenen
,
B.
, and
D’Haeseleer
,
W.
,
2014
, “
Comparison of Shell-and-Tube With Plate Heat Exchangers for the Use in Low-Temperature Organic Rankine Cycles
,”
Energy Convers. Manage.
,
87
, pp.
227
237
. 10.1016/j.enconman.2014.07.019
18.
Wang
,
J.
,
Yan
,
Z.
,
Wang
,
M.
,
Li
,
M.
, and
Dai
,
Y.
,
2013
, “
Multi-Objective Optimization of an Organic Rankine Cycle (ORC) for Low Grade Waste Heat Recovery Using Evolutionary Algorithm
,”
Energy Convers. Manage.
,
71
, pp.
146
158
. 10.1016/j.enconman.2013.03.028
19.
Imran
,
M.
,
Usman
,
M.
,
Park
,
B.-S.
,
Kim
,
H.-J.
, and
Lee
,
D.-H.
,
2015
, “
Multi-Objective Optimization of Evaporator of Organic Rankine Cycle (ORC) for Low Temperature Geothermal Heat Source
,”
Appl. Therm. Eng.
,
80
, pp.
1
9
. 10.1016/j.applthermaleng.2015.01.034
20.
Hayat
,
N.
,
Ameen
,
M. T.
,
Tariq
,
M. K.
,
Shah
,
S. N. A.
, and
Naveed
,
A.
,
2017
, “
Dual-Objective Optimization of Organic Rankine Cycle (ORC) Systems Using Genetic Algorithm: A Comparison Between Basic and Recuperative Cycles
,”
Heat Mass Transfer
,
53
(
8
), pp.
2577
2596
. 10.1007/s00231-017-1992-9
21.
Lim
,
T.-w.
, and
Choi
,
Y.-s.
,
2018
, “
Design of Plate Heat Exchangers for Use in Medium Temperature Organic Rankine Cycles
,”
Heat Mass Transfer
,
55
, pp.
165
174
.
22.
Bao
,
J.
, and
Zhao
,
L.
,
2013
, “
A Review of Working Fluid and Expander Selections for Organic Rankine Cycle
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
325
342
. 10.1016/j.rser.2013.03.040
23.
Marcuccilli
,
F.
, and
Thiolet
,
D.
,
2010
, “
Optimizing Binary Cycles Thanks to Radial Inflow Turbines
,”
Proceedings of World Geothermal Congress
,
Bali, Indonesia
,
Apr. 25–29
, pp.
1
9
.
24.
Tocci
,
L.
,
Pal
,
T.
,
Pesmazoglou
,
I.
, and
Franchetti
,
B.
,
2017
, “
Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review
,”
Energies
,
10
(
4
), pp.
1
26
. 10.3390/en10040413
25.
Rahbar
,
K.
,
Mahmoud
,
S.
,
Al-Dadah
,
R. K.
, and
Moazami
,
N.
,
2015
, “
Parametric Analysis and Optimization of a Small-Scale Radial Turbine for Organic Rankine Cycle
,”
Energy
,
83
, pp.
696
711
. 10.1016/j.energy.2015.02.079
26.
Rahbar
,
K.
,
Mahmoud
,
S.
,
Al-Dadah
,
R. K.
, and
Moazami
,
N.
,
2015
, “
Modelling and Optimization of Organic Rankine Cycle Based on a Small-Scale Radial Inflow Turbine
,”
Energy Convers. Manage.
,
91
, pp.
186
198
. 10.1016/j.enconman.2014.12.003
27.
Dong
,
B.
,
Xu
,
G.
,
Li
,
T.
,
Luo
,
X.
, and
Quan
,
Y.
,
2017
, “
Parametric Analysis of Organic Rankine Cycle Based on a Radial Turbine for Low-Grade Waste Heat Recovery
,”
Appl. Therm. Eng.
,
126
, pp.
470
479
. 10.1016/j.applthermaleng.2017.07.046
28.
Li
,
J.
,
Liu
,
Q.
,
Ge
,
Z.
,
Duan
,
Y.
, and
Yang
,
Z.
,
2017
, “
Thermodynamic Performance Analyses and Optimization of Subcritical and Transcritical Organic Rankine Cycles Using R1234ze(E) for 100–200 °C Heat Sources
,”
Energy Convers. Manage.
,
149
, pp.
140
154
. 10.1016/j.enconman.2017.06.060
29.
White
,
M. T.
, and
Sayma
,
A. I.
,
2018
, “
A Generalised Assessment of Working Fluids and Radial Turbines for Non-Recuperated Subcritical Organic Rankine Cycles
,”
Energies
,
11
(
4
), pp.
800
826
. 10.3390/en11040800
30.
Wang
,
J.
,
Yan
,
Z.
,
Wang
,
M.
,
Ma
,
S.
, and
Dai
,
Y.
,
2013
, “
Thermodynamic Analysis and Optimization of an (Organic Rankine Cycle) ORC Using Low Grade Heat Source
,”
Energy
,
49
(
1
), pp.
356
365
. 10.1016/j.energy.2012.11.009
31.
Xiao
,
L.
,
Wu
,
S. Y.
,
Yi
,
T. T.
,
Liu
,
C.
, and
Li
,
Y. R.
,
2015
, “
Multi-Objective Optimization of Evaporation and Condensation Temperatures for Subcritical Organic Rankine Cycle
,”
Energy
,
83
, pp.
723
733
. 10.1016/j.energy.2015.02.081
32.
Gimelli
,
A.
,
Luongo
,
A.
, and
Muccillo
,
M.
,
2017
, “
Efficiency and Cost Optimization of a Regenerative Organic Rankine Cycle Power Plant Through the Multi-Objective Approach
,”
Appl. Therm. Eng.
,
114
, pp.
601
610
. 10.1016/j.applthermaleng.2016.12.009
33.
Pierobon
,
L.
,
Benato
,
A.
,
Scolari
,
E.
,
Haglind
,
F.
, and
Stoppato
,
A.
,
2014
, “
Waste Heat Recovery Technologies for Offshore Platforms
,”
Appl. Energy
,
136
, pp.
228
241
. 10.1016/j.apenergy.2014.08.109
34.
Feng
,
Y.
,
Hung
,
T. C.
,
Zhang
,
Y.
,
Li
,
B.
,
Yang
,
J.
, and
Shi
,
Y.
,
2015
, “
Performance Comparison of Low-Grade ORCs (Organic Rankine Cycles) Using R245fa, Pentane and Their Mixtures Based on the Thermoeconomic Multi-Objective Optimization and Decision Makings
,”
Energy
,
93
(
2015
), pp.
2018
2029
. 10.1016/j.energy.2015.10.065
35.
Han
,
Z.
,
Mei
,
Z.
, and
Li
,
P.
,
2018
, “
Multi-Objective Optimization and Sensitivity Analysis of an Organic Rankine Cycle Coupled With a One-Dimensional Radial-Inflow Turbine Efficiency Prediction Model
,”
Energy. Convers. Manage.
,
166
, pp.
37
47
. 10.1016/j.enconman.2018.04.022
36.
Bahadormanesh
,
N.
,
Rahat
,
S.
, and
Yarali
,
M.
,
2017
, “
Constrained Multi-Objective Optimization of Radial Expanders in Organic Rankine Cycles by Firefly Algorithm
,”
Energy Convers. Manage.
,
148
, pp.
1179
1193
. 10.1016/j.enconman.2017.06.070
37.
Perdichizzi
,
A.
, and
Lozza
,
G.
,
1987
, “
Design Criteria and Efficiency Prediction for Radial Inflow Turbines
,”
ASME 1987 International Gas Turbine Conference and Exhibition
,
Anaheim, CA
,
May 31–June 4
, pp.
1
9
.
38.
Pezzuolo
,
A.
,
Benato
,
A.
,
Stoppato
,
A.
, and
Mirandola
,
A.
,
2016
, “
The Orc-pd: A Versatile Tool for Fluid Selection and Organic Rankine Cycle Unit Design
,”
Energy
,
102
, pp.
605
620
. 10.1016/j.energy.2016.02.128
39.
Lakew
,
A. A.
, and
Bolland
,
O.
,
2010
, “
Working Fluids for Low-Temperature Heat Source
,”
Appl. Therm. Eng.
,
30
(
10
), pp.
1262
1268
. 10.1016/j.applthermaleng.2010.02.009
40.
Sarkar
,
J.
,
2018
, “
Generalized Pinch Point Design Method of Subcritical-Supercritical Organic Rankine Cycle for Maximum Heat Recovery
,”
Energy
,
143
, pp.
141
150
. 10.1016/j.energy.2017.10.057
41.
Han
,
D.-H.
,
Lee
,
K.-J.
, and
Kim
,
Y.-H.
,
2003
, “
Experiments on the Characteristics of Evaporation of R410A in Brazed Plate Heat Exchangers With Different Geometric Configurations
,”
Appl. Therm. Eng.
,
23
(
10
), pp.
1209
1225
. 10.1016/S1359-4311(03)00061-9
42.
Quoilin
,
S.
,
2011
, “
Sustainable energy conversion through the use of Organic Rankine Cycles for waste heat recovery and solar applications
”,
Ph.D Thesis
,
Faculty of Applied Science of the University of Liège
,
Liège, Belgium
.
43.
Zhai
,
L.
,
Xu
,
G.
,
Wen
,
J.
,
Quan
,
Y.
,
Fu
,
J.
,
Wu
,
H.
, and
Li
,
T.
,
2017
, “
An Improved Modeling for Low-Grade Organic Rankine Cycle Coupled With Optimization Design of Radial-Inflow Turbine
,”
Energy Convers. Manage.
,
153
, pp.
60
70
. 10.1016/j.enconman.2017.09.063
44.
Kaşka
,
Ö.
,
2014
, “
Energy and Exergy Analysis of an Organic Rankine for Power Generation From Waste Heat Recovery in Steel Industry
,”
Energy Convers. Manage.
,
77
, pp.
108
117
. 10.1016/j.enconman.2013.09.026
45.
Marty
,
F.
,
Serra
,
S.
,
Sochard
,
S.
, and
Reneaume
,
J.-M.
,
2016
, “
Economic Optimization of a Combined Heat and Power Plant: Heat Vs Electricity
,”
Energy Procedia
,
Seoul, South Korea
,
Sept. 4–6
, Vol.
116
, pp.
138
151
.
46.
Dai
,
Y.
,
Wang
,
J.
, and
Gao
,
L.
,
2009
, “
Parametric Optimization and Comparative Study of Organic Rankine Cycle (ORC) for Low Grade Waste Heat Recovery
,”
Energy Convers. Manage.
,
50
(
3
), pp.
576
582
. 10.1016/j.enconman.2008.10.018
47.
Deb
,
K.
,
Pratab
,
S.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NGSA-II
,”
IEEE Trans. Evolutionary Comput.
,
6
(
2
), pp.
182
197
. 10.1109/4235.996017
48.
Hwang
,
C.-L.
, and
Yoon
,
K.
,
1981
,
Methods for Multiple Attribute Decision Making
,
Springer
,
Berlin/Heidelberg
, pp.
58
191
.
49.
Feng
,
Y.
,
Hung
,
T. C.
,
Greg
,
K.
,
Zhang
,
Y.
,
Li
,
B.
, and
Yang
,
J.
,
2015
, “
Thermoeconomic Comparison Between Pure and Mixture Working Fluids of Organic Rankine Cycles (ORCs) for Low Temperature Waste Heat Recovery
,”
Energy Convers. Manage.
,
106
, pp.
859
872
. 10.1016/j.enconman.2015.09.042
50.
Mehrpooya
,
M.
,
Ashouri
,
M.
, and
Mohammadi
,
A.
,
2017
, “
Thermoeconomic Analysis and Optimization of a Regenerative Two-Stage Organic Rankine Cycle Coupled With Liquefied Natural Gas and Solar Energy
,”
Energy
,
126
, pp.
899
914
. 10.1016/j.energy.2017.03.064
51.
Bekiloğlu
,
H. E.
,
Bedir
,
H.
, and
Anlaş
,
G.
,
2019
, “
Multi-Objective Optimization of ORC Parameters and Selection of Working Fluid Using Preliminary Radial Inflow Turbine Design
,”
Energy Convers. Manage.
,
183
, pp.
833
847
.
52.
Yan
,
Y.-Y.
, and
Lin
,
T.-F.
,
1999
, “
Evaporation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Plate Heat Exchanger
,”
ASME J. Heat. Transfer
,
121
(
1
), p.
118
. 10.1115/1.2825924
53.
Wang
,
Lieke
, and
Sunden
,
Bengt
,
2003
, “
Optimal Design of Plate Heat Exchangers With and Without Pressure Drop Specifications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
295
311
. 10.1016/S1359-4311(02)00195-3
54.
Da Lio
,
L.
,
Manente
,
G.
, and
Lazzaretto
,
A.
,
2017
, “
A Mean-Line Model to Predict the Design Efficiency of Radial Inflow Turbines in Organic Rankine Cycle (ORC) Systems
,”
Appl. Energy
,
205
, pp.
187
209
. 10.1016/j.apenergy.2017.07.120
55.
Lemmon
,
E. W.
,
MeLinden
,
M. O.
, and
Huber
,
M. L.
,
2013
, “
NIST Standard Reference Database 23, Version 9.1
”,
Applied Chemicals and Materials Division, the U.S. Secretary of Commerce
.
56.
Desai
,
N. B.
, and
Bandyopadhyay
,
S.
,
2009
, “
Process Integration of Organic Rankine Cycle
,”
Energy
,
34
(
10
), pp.
1674
1686
. 10.1016/j.energy.2009.04.037
57.
Eyerer
,
S.
,
Wieland
,
C.
,
Vandersickel
,
A.
, and
Spliethoff
,
H.
,
2016
, “
Experimental Study of an ORC (Organic Rankine Cycle) and Analysis of R1233zd-E as a Drop-in Replacement for R245fa for Low Temperature Heat Utilization
,”
Energy
,
103
, pp.
660
671
. 10.1016/j.energy.2016.03.034
58.
Liu
,
W.
,
Meinel
,
D.
,
Gleinser
,
M.
,
Wieland
,
C.
, and
Spliethoff
,
H.
,
2015
, “
Optimal Heat Source Temperature for Thermodynamic Optimization of Sub-Critical Organic Rankine Cycles
,”
Energy
,
88
, pp.
897
906
. 10.1016/j.energy.2015.07.040
59.
Wilson
,
D. P.
,
Kujak
,
S.
,
Leary
,
J. M. O.
,
Kennoy
,
D. H.
,
Kusmierz
,
A.
,
Patnaik
,
V.
,
Brock
,
W. J.
,
Macleod
,
S.
,
Clough
,
W.
,
Richard
,
R. G.
,
Manole
,
D. M.
,
Rusch
,
G. M.
,
Doerr
,
R. G.
,
Senediak
,
J.
,
Dugard
,
P. H.
,
Sundaresan
,
G. S.
,
Jepson
,
G. W.
,
Walter
,
W. F.
,
Kohler
,
J. A.
,
Marriott
,
C. E.
,
Cooper
,
K. W.
,
Abramson
,
D. S.
,
Barnaby
,
C. S.
,
Emmerich
,
S. J.
,
Fraser
,
A. B.
,
Myers
,
F.
, and
Peterson
,
J. C.
,
2010
,
ANSI/ASHRAE Standard 34-2010
,
Designation and Safety Classification of Refrigerants
,
Atlanta, GA
:
ANSI/ASHRAE
.
60.
Braimakis
,
K.
, and
Karellas
,
S.
,
2017
, “
Integrated Thermoeconomic Optimization of Standard and Regenerative ORC for Different Heat Source Types and Capacities
,”
Energy
,
121
, pp.
570
598
. 10.1016/j.energy.2017.01.042
61.
Maraver
,
D.
,
Royo
,
J.
,
Lemort
,
V.
, and
Quoilin
,
S.
,
2014
, “
Systematic Optimization of Subcritical and Transcritical Organic Rankine Cycles (ORCs) Constrained by Technical Parameters in Multiple Applications
,”
Appl. Energy
,
117
, pp.
11
29
. 10.1016/j.apenergy.2013.11.076
62.
Quoilin
,
S.
,
Declaye
,
S.
,
Tchanche
,
B. F.
, and
Lemort
,
V.
,
2011
, “
Thermo-Economic Optimization of Waste Heat Recovery Organic Rankine Cycles
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2885
2893
. 10.1016/j.applthermaleng.2011.05.014
63.
Aungier
,
R. H.
,
2006
,
Turbine Aerodynamics: Axial-Flow and Radial-Inflow Turbine Design and Analysis
,
ASME Press
,
New York
.
64.
Glassman
,
A. J.
,
1976
, “
Computer Program for Design Analysis of Radial-Inflow Turbines
”.
NASA Tech. Pap., Report No: NASA TN D-8164
.
65.
Zhang
,
C.
,
Liu
,
C.
,
Wang
,
S.
,
Xu
,
X.
, and
Li
,
Q.
,
2017
, “
Thermo-Economic Comparison of Subcritical Organic Rankine Cycle Based on Different Heat Exchanger Configurations
,”
Energy
,
123
, pp.
728
741
. 10.1016/j.energy.2017.01.132
66.
Magdalena Santos-Rodriguez
,
M.
,
Flores-Tlacuahuac
,
A.
, and
Zavala
,
V. M.
,
2017
, “
A Stochastic Optimization Approach for the Design of Organic Fluid Mixtures for Low-Temperature Heat Recovery
,”
Appl. Energy
,
198
, pp.
145
159
. 10.1016/j.apenergy.2017.04.047
67.
Dixon
,
S. L.
,
2013
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth-Heinemann
,
Oxford, UK
.
68.
Moustapha
,
H.
,
Zelesky
,
M. F.
,
Baines
,
N. C.
, and
Japikse
,
D.
,
2003
,
Axial and Radial Turbines
,
Concepts NREC, Inc.
,
Whire River Junction, VT
.
69.
He
,
C.
,
Jiao
,
Y.
,
Tian
,
C.
,
Wang
,
Z.
, and
Zhang
,
Z.
,
2017
, “
The Exergy Loss Distribution and the Heat Transfer Capability in Subcritical Organic Rankine Cycle
,”
Entropy
,
19
(
6
), pp.
256
241
.
70.
Andreasen
,
J. G.
,
Larsen
,
U.
,
Knudsen
,
T.
,
Pierobon
,
L.
, and
Haglind
,
F.
,
2014
, “
Selection and Optimization of Pure and Mixed Working Fluids for Low Grade Heat Utilization Using Organic Rankine Cycles
,”
Energy
,
73
, pp.
204
213
. 10.1016/j.energy.2014.06.012
71.
Li
,
Y. R.
,
Wang
,
J. N.
, and
Du
,
M. T.
,
2012
, “
Influence of Coupled Pinch Point Temperature Difference and Evaporation Temperature on Performance of Organic Rankine Cycle
,”
Energy
,
42
(
1
), pp.
503
509
. 10.1016/j.energy.2012.03.018
72.
Dong
,
B.
,
Xu
,
G.
,
Li
,
T.
,
Quan
,
Y.
, and
Wen
,
J.
,
2018
, “
Thermodynamic and Economic Analysis of Zeotropic Mixtures as Working Fluids in Low Temperature Organic Rankine Cycles
,”
Appl. Therm. Eng.
,
132
, pp.
545
553
. 10.1016/j.applthermaleng.2017.12.083
73.
García-Cascales
,
J. R.
,
Vera-García
,
F.
,
Corberán-Salvador
,
J. M.
, and
Gonzálvez-Maciá
,
J.
,
2007
, “
Assessment of Boiling and Condensation Heat Transfer Correlations in the Modelling of Plate Heat Exchangers
,”
Int. J. Refrigeration
,
30
(
6
), pp.
1029
1041
. 10.1016/j.ijrefrig.2007.01.004
74.
Kim
,
D.-Y.
, and
Kim
,
Y.-T.
,
2017
, “
Preliminary Design and Performance Analysis of a Radial Inflow Turbine for Organic Rankine Cycles
,”
Appl. Therm. Eng.
,
120
, pp.
549
559
. 10.1016/j.applthermaleng.2017.04.020
75.
Fiaschi
,
D.
,
Manfrida
,
G.
, and
Maraschiello
,
F.
,
2012
, “
Thermo-Fluid Dynamics Preliminary Design of Turbo-Expanders for ORC Cycles
,”
Appl. Energy
,
97
, pp.
601
608
. 10.1016/j.apenergy.2012.02.033
76.
Suhrmann
,
J. F.
,
Peitsch
,
D.
,
Gugau
,
M.
,
Heuer
,
T.
, and
Tomm
,
U.
,
2010
, “
Validation and Development of Loss Models for Small Size Radial Turbines
,”
Proceedings of ASME Turbo Expo 2010: Poer for Land, Sea and Air
, pp.
1
13
.
77.
Ventura
,
C. A.
,
Jacobs
,
P. A.
,
Rowlands
,
A. S.
,
Petrie-Repar
,
P.
, and
Sauret
,
E.
,
2012
, “
Preliminary Design and Performance Estimation of Radial Inflow Turbines: An Automated Approach
,”
ASME J. Fluid Eng.
,
134
(
3
), p.
031102
. 10.1115/1.4006174
78.
Al Jubori
,
A. M.
,
Al-Dadah
,
R.
, and
Mahmoud
,
S.
,
2017
, “
Performance Enhancement of a Small-Scale Organic Rankine Cycle Radial-Inflow Turbine Through Multi-Objective Optimization Algorithm
,”
Energy
,
131
, pp.
297
311
. 10.1016/j.energy.2017.05.022
79.
Churchill
,
S. W.
,
1977
, “
Friction-Factor Equation Spans All Fluid-Flow Regimes
,”
Chem. Eng.
,
84
(
24
), pp.
91
92
.
You do not currently have access to this content.