Abstract

Pyrolysis of a rarely researched biomass feedstock, Delonix regia (DR), at different pyrolysis temperatures carried out in a tubular reactor at an atmospheric pressure of one bar. In addition to the fuel and physical properties of produced bio-oil and bio-char, extensive advanced characterization of these products, viz. Fourier transformation infrared (FTIR), GC-MS, proton (1H) nuclear magnetic resonance (1H NMR), X-ray diffraction (XRD), etc. is also performed as applicable to different products. The main emphasis of this work is on both quantitative and qualitative analysis of pyrolytic bio-oil and bio-char obtained from DR at 500–700 °C. In this range of temperature, higher heating value (HHV) of bio-oil found to be varying between 20.88 MJ/kg and 25.70 MJ/kg following increasing trend with the temperature. However, HHV of bio-char observed to be almost unaffected by pyrolysis temperature, and it is approximately 36 MJ/kg. The density of bio-oil found to be decreasing from 0.95 g/cc to 0.88 g/cc as the pyrolysis temperature increases from 500 to 700 °C; however, pH is found to be almost unaffected by the pyrolysis temperature changing only slightly from 3.4 to 3.3. Furthermore, the moisture content of bio-oil is also found to be unaffected by the temperature variations. From the GC-MS chromatograms of bio-oils, it is found that benzene is highest area % (with 14.6%) and phenol, 2,6-dimethoxy is the second-highest area % occupying component (with 10.5%) in bio-oil obtained at 600 °C of pyrolysis temperature. This result indicates that the DR feedstock is also an excellent resource for producing value-added green chemicals.

References

1.
Huber
,
G. W.
,
Iborra
,
S.
, and
Corma
,
A.
,
2006
, “
Synthesis of Transportation Fuels From Biomass: Chemistry, Catalysts, and Engineering
,”
Chem. Rev.
,
106
(
9
), pp.
4044
4098
. 10.1021/cr068360d
2.
Gollakota
,
A. R. K.
,
Kishore
,
N.
, and
Gu
,
S.
,
2018
, “
A Review on Hydrothermal Liquefaction of Biomass
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
1378
1392
. 10.1016/j.rser.2017.05.178
3.
Kawale
,
H. D.
, and
Kishore
,
N.
,
2019
, “
Production of Hydrocarbons From a Green Algae (Oscillatoria) With Exploration of Its Fuel Characteristics Over Different Reaction Atmospheres
,”
Energy
,
178
, pp.
344
355
. 10.1016/j.energy.2019.04.103
4.
Cheng
,
Y. T.
, and
Huber
,
G. W.
,
2011
, “
Chemistry of Furan Conversion Into Aromatics and Olefins Over HZSM-5: A Model Biomass Conversion Reaction
,”
ACS Catal.
,
1
(
6
), pp.
611
628
. 10.1021/cs200103j
5.
Ren
,
X.
,
Meng
,
J.
,
Chang
,
J.
,
Kelley
,
S. S.
,
Jameel
,
H.
, and
Park
,
S.
,
2017
, “
Effect of Blending Ratio of Loblolly Pine Wood and Bark on the Properties of Pyrolysis Bio-Oils
,”
Fuel Process. Technol.
,
167
, pp.
43
49
. 10.1016/j.fuproc.2017.06.025
6.
Carlson
,
T. R.
,
Vispute
,
T. P.
, and
Huber
,
G. W.
,
2008
, “
Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass Derived Compounds
,”
ChemSusChem.
,
1
(
5
), pp.
397
400
. 10.1002/cssc.200800018
7.
Gollakota
,
A. R. K.
,
Reddy
,
M.
,
Subramanyam
,
M. D.
, and
Kishore
,
N.
,
2016
, “
A Review on the Upgradation Techniques of Pyrolysis Oil
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
1543
1568
. 10.1016/j.rser.2015.12.180
8.
Xiu
,
S.
, and
Shahbazi
,
A.
,
2012
, “
Bio-Oil Production and Upgrading Research: A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
4406
4414
. 10.1016/j.rser.2012.04.028
9.
Chen
,
D.
,
Yu
,
X.
,
Song
,
C.
,
Pang
,
X.
,
Huang
,
J.
, and
Li
,
Y.
,
2016
, “
Effect of Pyrolysis Temperature on the Chemical Oxidation Stability of Bamboo Biochar
,”
Bioresour. Technol.
,
218
, pp.
1303
1306
. 10.1016/j.biortech.2016.07.112
10.
Hernandez-Mena
,
L. E.
,
Pecora
,
A. A. B.
, and
Beraldo
,
A. L.
,
2014
, “
Slow Pyrolysis of Bamboo Biomass: Analysis of Biochar Properties
,”
Chem. Eng. Trans.
,
37
, pp.
115
120
. 10.3303/CET1437020
11.
Mohan
,
D.
,
Pittman
,
C. U.
, and
Steele
,
P. H.
,
2006
, “
Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review
,”
Energy Fuels
,
20
(
3
), pp.
848
889
. 10.1021/ef0502397
12.
Ertaş
,
M.
, and
Hakki Alma
,
M.
,
2010
, “
Pyrolysis of Laurel (Laurus Nobilis L.) Extraction Residues in a Fixed-Bed Reactor: Characterization of Bio-Oil and Bio-Char
,”
J. Anal. Appl. Pyrolysis
,
88
(
1
), pp.
22
29
. 10.1016/j.jaap.2010.02.006
13.
Demirbas
,
A.
,
2004
, “
Determination of Calorific Values of Bio-Chars and Pyro-Oils From Pyrolysis of Beech Trunkbarks
,”
J. Anal. Appl. Pyrolysis
,
72
(
2
), pp.
215
219
. 10.1016/j.jaap.2004.06.005
14.
Williams
,
P. T.
, and
Besler
,
S.
,
1996
, “
The Influence of Temperature and Heating Rate on the Slow Pyrolysis of Biomass
,”
Renewable Energy
,
7
(
3
), pp.
233
250
. 10.1016/0960-1481(96)00006-7
15.
Li
,
S.
,
Xu
,
S.
,
Liu
,
S.
,
Yang
,
C.
, and
Lu
,
Q.
,
2004
, “
Fast Pyrolysis of Biomass in Free-Fall Reactor for Hydrogen-Rich Gas
,”
Fuel Process. Technol.
,
85
(
8–10
), pp.
1201
1211
. 10.1016/j.fuproc.2003.11.043
16.
Sun
,
S.
,
Tian
,
H.
,
Zhao
,
Y.
,
Sun
,
R.
, and
Zhou
,
H.
,
2010
, “
Experimental and Numerical Study of Biomass Flash Pyrolysis in an Entrained Flow Reactor
,”
Bioresour. Technol.
,
101
(
10
), pp.
3678
3684
. 10.1016/j.biortech.2009.12.092
17.
Choi
,
H. S.
,
Choi
,
Y. S.
, and
Park
,
H. C.
,
2012
, “
Fast Pyrolysis Characteristics of Lignocellulosic Biomass With Varying Reaction Conditions
,”
Renewable Energy
,
42
, pp.
131
135
. 10.1016/j.renene.2011.08.049
18.
Demirbas
,
A.
,
2004
, “
Effect of Initial Moisture Content on the Yields of Oily Products From Pyrolysis of Biomass
,”
J. Anal. Appl. Pyrolysis
,
71
(
2
), pp.
803
815
. 10.1016/j.jaap.2003.10.008
19.
Zanzi
,
R.
,
Sjstrm
,
K.
, and
Bjrnbom
,
E.
,
1996
, “
Rapid High-Temperature Pyrolysis of Biomass in a Free-Fall Reactor
,”
Fuel
,
75
(
5
), pp.
545
550
. 10.1016/0016-2361(95)00304-5
20.
Steinberg
,
M.
,
Fallon
,
P. T.
, and
Sundaram
,
M. S.
,
1986
, “
Flash Pyrolysis of Biomass With Reactive and Non-Reactive Gas
,”
Biomass
,
9
(
4
), pp.
293
315
. 10.1016/0144-4565(86)90080-6
21.
Lappas
,
A. A.
,
Samolada
,
M. C.
,
Iatridis
,
D. K.
,
Voutetakis
,
S. S.
, and
Vasalos
,
I. A.
,
2002
, “
Biomass Pyrolysis in a Circulating Fluid bed Reactor for the Production of Fuels and Chemicals
,”
Fuel
,
81
(
16
), pp.
2087
2095
. 10.1016/S0016-2361(02)00195-3
22.
Demirbas
,
A.
,
2005
, “
Pyrolysis of Ground Beech Wood in Irregular Heating Rate Conditions
,”
J. Anal. Appl. Pyrolysis
,
73
(
1
), pp.
39
43
. 10.1016/j.jaap.2004.04.002
23.
Amutio
,
M.
,
Lopez
,
G.
,
Aguado
,
R.
,
Artetxe
,
M.
,
Bilbao
,
J.
, and
Olazar
,
M.
,
2011
, “
Effect of Vacuum on Lignocellulosic Biomass Flash Pyrolysis in a Conical Spouted Bed Reactor
,”
Energy Fuels
,
25
(
9
), pp.
3950
3960
. 10.1021/ef200712h
24.
Mullen
,
C. A.
,
Boateng
,
A. A.
,
Goldberg
,
N. M.
,
Lima
,
I. M.
,
Laird
,
D. A.
, and
Hicks
,
K. B.
,
2010
, “
Bio-Oil and Bio-Char Production From Corn Cobs and Stover by Fast Pyrolysis 5
,”
Biomass Bioenergy
,
34
(
1
), pp.
67
74
. 10.1016/j.biombioe.2009.09.012
25.
Alvarez
,
J.
,
Lopez
,
G.
,
Amutio
,
M.
,
Bilbao
,
J.
, and
Olazar
,
M.
,
2014
, “
Bio-Oil Production From Rice Husk Fast Pyrolysis in a Conical Spouted Bed Reactor
,”
Fuel
,
128
, pp.
162
169
. 10.1016/j.fuel.2014.02.074
26.
Horne
,
P. A.
, and
Williams
,
P. T.
,
1996
, “
Influence of Temperature on the Products From the Flash Pyrolysis of Biomass
,”
Fuel
,
75
(
9
), pp.
1051
1059
. 10.1016/0016-2361(96)00081-6
27.
Patra
,
S. C.
,
Vijay
,
M.
, and
Panda
,
A. K.
,
2017
, “
Production and Characterisation of Bio-Oil From Gold Mohar (Delonix Regia) Seed Through Pyrolysis Process
,”
Int. J. Ambient Energy
,
38
(
8
), pp.
788
793
. 10.1080/01430750.2016.1222958
28.
Vargas
,
A. M. M.
,
Cazetta
,
A. L.
,
Garcia
,
C. A.
,
Moraes
,
J. C. G.
,
Nogami
,
E. M.
,
Lenzi
,
E.
,
Costa
,
W. F.
, and
Almeida
,
V. C.
,
2011
, “
Preparation and Characterization of Activated Carbon From a New Raw Lignocellulosic Material: Flamboyant (Delonix Regia) Pods
,”
J. Environ. Manage.
,
92
(
1
), pp.
178
184
. 10.1016/j.jenvman.2010.09.013
29.
Buckley
,
T. J.
, and
Domalski
,
E. S.
,
1988
, “
National-Waste-Processing-Conference-12
,”
1988 National Waste Processing Conference
,
Philadelphia
,
May 1–4
, pp.
77
84
. http://www.seas.columbia.edu/earth/wtert/sofos/nawtec/1988-National-Waste-Processing-Conference/1988-National-Waste-Processing-Conference-12.pdf
30.
Yuan
,
T.
,
Tahmasebi
,
A.
, and
Yu
,
J.
,
2015
, “
Comparative Study on Pyrolysis of Lignocellulosic and Algal Biomass Using a Thermogravimetric and a Fixed-Bed Reactor
,”
Bioresour. Technol.
,
175
, pp.
333
341
. 10.1016/j.biortech.2014.10.108
31.
Sabiha-Hanim
,
S.
, and
Aziatul-Akma
,
A.
,
2016
, “
Polymer Characterization of Cellulose and Hemicellulose, Polymer Science: Research Advances
,”
Pract. Appl. Educ. Aspects
,
2016
(
1
), pp.
404
411
.
32.
Liu
,
C.
,
Wang
,
H.
,
Karim
,
A. M.
,
Sun
,
J.
, and
Wang
,
Y.
,
2014
, “
Catalytic Fast Pyrolysis of Lignocellulosic Biomass
,”
Chem. Soc. Rev.
,
43
(
22
), pp.
7594
7623
. 10.1039/C3CS60414D
33.
Zhang
,
H.
,
Xiao
,
R.
,
Wang
,
D.
,
Zhong
,
Z.
,
Song
,
M.
,
Pan
,
Q.
, and
He
,
G.
,
2009
, “
Catalytic Fast Pyrolysis of Biomass in a Fluidized Bed With Fresh and Spent Fluidized Catalytic Cracking (FCC) Catalysts
,”
Energy Fuels
,
23
(
12
), pp.
6199
6206
. 10.1021/ef900720m
34.
Mante
,
O. D.
, and
Agblevor
,
F. A.
,
2011
, “
Catalytic Conversion of Biomass to Bio-Syncrude Oil
,”
Biomass Convers. Biorefin.
,
1
(
4
), pp.
203
215
. 10.1007/s13399-011-0020-4
35.
Zhang
,
H.
,
Xiao
,
R.
,
Huang
,
H.
, and
Xiao
,
G.
,
2009
, “
Comparison of non-Catalytic and Catalytic Fast Pyrolysis of Corncob in a Fluidized Bed Reactor
,”
Bioresour. Technol.
,
100
(
3
), pp.
1428
1434
. 10.1016/j.biortech.2008.08.031
36.
Zhang
,
Q.
,
Chang
,
J.
,
Wang
,
T.
, and
Xu
,
Y.
,
2007
, “
Review of Biomass Pyrolysis Oil Properties and Upgrading Research
,”
Energy Convers. Manage.
,
48
(
1
), pp.
87
92
. 10.1016/j.enconman.2006.05.010
37.
Butler
,
E.
,
Devlin
,
G.
,
Meier
,
D.
, and
McDonnell
,
K.
,
2011
, “
A Review of Recent Laboratory Research and Commercial Developments in Fast Pyrolysis and Upgrading
,”
Renewable Sustainable Energy Rev.
,
15
(
8
), pp.
4171
4186
. 10.1016/j.rser.2011.07.035
38.
Gottlieb
,
H. E.
,
Kotlyar
,
V.
, and
Nudelman
,
A.
,
1997
, “
NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities
,”
J. Org. Chem.
,
62
(
21
), pp.
7512
7515
. 10.1021/jo971176v
39.
Mullen
,
C. A.
,
Strahan
,
G. D.
, and
Boateng
,
A. A.
,
2009
, “
Characterization of Various Fast-Pyrolysis Bio-Oils by NMR Spectroscopy
,”
Energy Fuels
,
23
(
5
), pp.
2707
2718
. 10.1021/ef801048b
40.
Majid
,
A.
, and
Pihillagawa
,
I.
,
2014
, “
Potential of NMR Spectroscopy in the Characterization of Nonconventional Oils
,”
J. Fuels
,
2014
, pp.
1
7
. 10.1155/2014/390261
41.
Bourke
,
J.
,
Manley-Harris
,
M.
,
Fushimi
,
C.
,
Dowaki
,
K.
,
Nunoura
,
T.
, and
Antal
,
M. J.
,
2007
, “
Do All Carbonized Charcoals Have the Same Chemical Structure? 2. A Model of the Chemical Structure of Carbonized Charcoal
,”
Ind. Eng. Chem. Res.
,
46
(
18
), pp.
5954
5967
. 10.1021/ie070415u
42.
Yao
,
Y.
,
Gao
,
B.
,
Inyang
,
M.
,
Zimmerman
,
A. R.
,
Cao
,
X.
,
Pullammanappallil
,
P.
, and
Yang
,
L.
,
2011
, “
Removal of Phosphate From Aqueous Solution by Biochar Derived From Anaerobically Digested Sugar Beet Tailings
,”
J. Hazard. Mater.
,
190
(
1–3
), pp.
501
507
. 10.1016/j.jhazmat.2011.03.083
43.
Keiluweit
,
M.
,
Nico
,
P. S.
,
Johnson
,
M.
, and
Kleber
,
M.
,
2010
, “
Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar)
,”
Environ. Sci. Technol.
,
44
(
4
), pp.
1247
1253
. 10.1021/es9031419
You do not currently have access to this content.