Abstract

This study presents the rotor blade airfoil analysis of residential-scale wind turbines. On this track, four new airfoils (GOE 447, GOE 446, NACA 6412, and NACA 64(3)-618) characterized by their high lift-to-drag ratios (161.3, 148.7, 142.7, and 136.3, respectively). These new airfoils are used to generate an entire 7 m long blades for three-bladed rotor horizontal axis wind turbine models tested numerically at low, medium, and rated wind speeds of 7.5, 10, and 12.5 m/s, respectively, with a design tip speed ratio of 7. The criterion to judge each model’s performance is power output. Thus, the blades of the model that produce the highest power are selected to undergo a tip modification (winglet) and leading-edge modification (tubercles), seeking power improvement. It is found that the GOE 447 airfoil outperformed the other three airfoils at all tested wind speeds. Thus, it is opted for adding winglets and tubercles. At 12.5 m/s, winglet design produced 5% more power, while tubercles produced 5.5% more power than the GOE 447 baseline design. Furthermore, the computational domain is divided into two regions: rotating (the disc that encloses the rotor) and stationary (the rest of the flow domain). Meanwhile, the numerical model is validated against the experimental velocity measurements. Since Reynolds-averaged Navier–Stokes with k–ω shear stress transport turbulence model can capture the laminar-to-turbulent boundary layer transition, it is used in the 18 simulations of the current work. However, large eddy simulation (LES) can deal successfully with the various scale eddies resulting from the rotor blades and its interactions with the surrounding flow. Thus, the LES was used in the six simulations done at the rated wind speed. LES power output calculation is 7.9% to 11.9% higher than the RANS power output calculation.

References

1.
Renewables 2019 Global Status Report
,”
REN21 Secretariat
,
Paris
,
2019
.
2.
Helm
,
D.
,
2016
, “
The Future of Fossil Fuels-is it the end?
,”
Oxford Rev Econ. Policy
,
32
(
2
), pp.
191
205
. 10.1093/oxrep/grw015
3.
Kurtulmus
,
F.
, and
Izli
,
A.
,
2007
, “
Aerodynamic Analyses of Different Wind Turbine Blade Profiles
,”
J. Appl. Sci.
,
7
(
5
), pp.
663
670
. 10.3923/jas.2007.663.670
4.
Hsiao
,
F-B
,
Bai
,
C-J
, and
Chong
,
W-T
,
2013
, “
The Performance Test of Three Different Horizontal Axis Wind Turbine Blade Shapes Using Experimental and Numerical Methods
,”
J. Energies
,
6
(
6
), pp.
2784
2803
. 10.3390/en6062784
5.
Tobin
,
N.
,
Hamed
,
A.
, and
Chamorro
,
L.
,
2015
, “
An Experimental Study on the Effects of Winglets on the Wake and Performance of a Model Wind Turbine
,”
J. Energies
,
8
(
10
), pp.
11955
11972
. 10.3390/en81011955
6.
Khaled
,
M.
,
Ibrahim
,
M.
,
AbdelHamed
,
H.
, and
AbdelGawad
,
A.
,
2019
, “
Investigation of a Small Horizontal Axis Wind Turbine Performance with and Without Winglet
,”
J. Energy
,
187
(
115921
), pp.
1
14
. 10.1016/j.energy.2019.115921
7.
Farhan
,
A.
,
Hassanpour
,
A.
,
Burns
,
A.
, and
Motlaph
,
Y. G.
,
2019
, “
Numerical Study of Effect of Winglet Planform and Airfoil on a Horizontal Axis Wind Turbine Performance
,”
J. Renewable Energy
,
131
, pp.
1255
1273
. 10.1016/j.renene.2018.08.017
8.
Khalafallah
,
M. G.
,
Ahmed
,
A. M.
, and
Emam
,
M. K.
,
2019
, “
The Effect of Using Winglets to Enhance the Performance of Swept Blades of a Horizontal Axis Wind Turbine
,”
J. Adv. Mech. Eng.
,
11
(
9
), pp.
1
10
.10.1177/1687814019878312
9.
Johansen
,
J.
, and
Sorensen
,
N.
,
2006
,
Aerodynamic Investigation of Winglets on Wind Turbine Blades Using CFD
,
Riso National Laboratory
,
Roskilde, Denmark
.
10.
Amano
,
R. S.
, and
Gupta
,
A.
,
2012
, “
CFD Analysis of Wind Turbine Blade with Winglets
,”
DETC2012-70679, Proc. ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
.
11.
Ibrahim
,
M.
,
Alsultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051205
. 10.1115/1.4030399
12.
Kumar
,
S.
, and
Amano
,
R.
,
2012
, “
Wind Turbine Blade Design and Analysis with Tubercle Technology
,”
Proceedings of ASME IDETC/CIE 2012
,
Chicago, IL
,
Aug. 12–15
.
13.
Abate
,
G.
,
Mavris
,
D. N.
, and
Sankar
,
L. N.
,
2019
, “
Performance Effects of Leading-Edge Tubercles on the NREL Phase VI Wind Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051206
. 10.1115/1.4042529
14.
Amano
,
R. S.
,
Gupta
,
A.
,
Alsultan
,
A.
,
Kumar
,
S.
, and
Welsh
,
A.
,
2013
, “
Design and Analysis of Wind Turbine Blades—Winglet, Tubercle, And Slotted
,”
Proceedings of ASME 2013 Turbo Expo, GT2013-94116
,
San Antonio, TX
,
June 3–7
.
15.
Hasan
,
A. S.
,
Jackson
,
R. S.
, and
Amano
,
R. S.
,
2019
, “
Experimental Study of the Wake Regions in Wind Farms
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051209
. 10.1115/1.4042968
16.
Hasan
,
A.
,
Elgammal
,
T.
,
Jackson
,
R.
, and
Amano
,
R.
,
2019
, “
Comparative Study of the Inline Configuration Wind Farm
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061302
.10.1115/1.4045463
17.
Plengsaard
,
C.
,
2013
, “
Improved Engine Wall Models for Large Eddy Simulation (LES)
,”
Ph.D. dissertation
,
University of Wisconsin Madison
.
18.
Zhiyin
,
Y.
,
2015
, “
Large-Eddy Simulation: Past, Present and the Future
,”
Chinese J. Aeronaut.
,
28
(
1
), pp.
11
24
. 10.1016/j.cja.2014.12.007
19.
Simcenter STAR-CCM+ v13.06 User Guide
,
2018
,
Siemens PLM Software
,
Plano, TX
.
20.
Manwell
,
J. F.
,
Mcgowan
,
J. G.
, and
Rogers
,
A. L.
,
2010
,
Wind Energy Explained Theory, Design and Application
, 2nd ed.,
Chippenham
,
Wiltshire, Great Britain
.
21.
Mahu
,
R.
, and
Popescu
,
F.
,
2011
, “
NREL Phase VI Rotor Modeling and Simulation Using Ansys Fluent 12.1
,”
Math. Model. Civ. Eng.
, (
1/2
), pp.
185
194
.
22.
Aranake
,
A. C.
,
Lakshminarayan
,
V. K.
, and
Duraisamy
,
K.
,
2012
, “
Assessment of Transition Model and CFD Methodology for Wind Turbine Flows
,” AIAA Paper No. 2012-2720.
23.
Zhang
,
R.-K.
, and
Wu
,
V. D. J.-Z.
,
2012
, “
Aerodynamic Characteristics of Wind Turbine Blades with a Sinusoidal Leading Edge
,”
Wind Energy
,
15
(
3
), pp.
407
424
. 10.1002/we.479
24.
Tennekes
,
H.
, and
Lumley
,
J. L.
,
1972
,
A First Course in Turbulence
,
The MIT Press
,
Cambridge, MA, and London, England
.
You do not currently have access to this content.