Abstract

Coalbed methane (CBM) which is clean energy has received great emphasis recently, and the multi-fracturing technology is widely applied in the exploitation of CBM. Due to the complexity, the randomness, and the anisotropism of the porous medium and the anomalous diffusion process, the fractal theory and fractional calculus are utilized to establish a semi-analytical fractal-fractional mathematical model considering the stress sensitivity of the cleat system for multi-fractured horizontal wells in CBM reservoirs. Through line-sink theory, Pedrosa transformation, perturbation theory, Laplace transformation, element discretization, superposition principle, and Stehfest numerical inversion, the pressure-transient analysis curves are plotted in the double logarithmic coordinates. By comparing with the existing model, the validation of the proposed model is illustrated. Also, nine flowing stages are identified according to different characteristics. Then, sensitivity analysis is conducted and influence laws are summarized. At last, a field application is introduced to furtherly verify the reliability of the proposed model. The relevant results analysis can provide some new significant guidance for interpreting the field data more precisely.

References

1.
Zhou
,
Y.
,
Meng
,
Q.
,
Lin
,
B.
,
Qin
,
J.
, and
Zhou
,
G.
,
2018
, “
A Simple Method for Solving Unidirectional Methane Gas Flow in Coal Seam Based on Similarity Solution
,”
Int. J. Min. Sci. Technol.
,
28
(
2
), pp.
331
334
. 10.1016/j.ijmst.2017.12.006
2.
Dong
,
J.
,
Cheng
,
Y.
,
Jin
,
K.
,
Zhang
,
H.
,
Liu
,
Q.
,
Jiang
,
J.
, and
Hu
,
B.
,
2017
, “
Effects of Diffusion and Suction Negative Pressure on Coalbed Methane Extraction and a New Measure to Increase the Methane Utilization Rate
,”
Fuel
,
197
, pp.
70
81
. 10.1016/j.fuel.2017.02.006
3.
Dong
,
J.
,
Cheng
,
Y.
, and
Pan
,
Z.
,
2020
, “
Comparison of Transient and Pseudo-Steady Diffusion of Methane in Coal and Implications for Coalbed Methane Control
,”
J. Pet. Sci. Eng.
,
184
, pp.
106543
. 10.1016/j.petrol.2019.106543
4.
Li
,
L. D.
,
Zhang
,
S. C.
, and
Geng
,
M.
,
2010
, “
CBM Reservoir Hydraulic Fracture Propagation Rule
,”
Nat. Gas. Ind.
,
30
(
2
), pp.
72
74
.
5.
Li
,
D. Q.
,
Zhang
,
S. C.
, and
Zhang
,
S. A.
,
2014
, “
Experimental and Numerical Simulation Study on Fracturing Through Interlayer to Coal Seam
,”
J. Nat. Gas. Sci. Eng.
,
21
, pp.
386
396
. 10.1016/j.jngse.2014.08.022
6.
Zhao
,
J.
,
Zhao
,
J.
,
Hu
,
Y.
,
Zhang
,
S.
,
Huang
,
T.
, and
Liu
,
X.
,
2019
, “
Numerical Simulation of Multistage Fracturing Optimization and Application in Coalbed Methane Horizontal Wells
,”
Eng. Fract. Mech.
,
223
, pp.
106738
. 10.1016/j.engfracmech.2019.106738
7.
Longlong
,
L. I.
,
Jun
,
Y. A. O.
,
Yang
,
L. I.
,
Minglu
,
W. U.
,
Qingdong
,
Z. E. N. G.
, and
Ranran
,
L. U.
,
2014
, “
Productivity Calculation and Distribution of Staged Multi-Cluster Fractured Horizontal Wells
,”
Pet. Explor. Dev.
,
41
(
4
), pp.
504
508
. 10.1016/S1876-3804(14)60058-6
8.
Anbarci
,
K.
, and
Ertekin
,
T.
,
1990
, “
A Comprehensive Study of Pressure Transient Analysis With Sorption Phenomena for Single-Phase Gas Flow in Coal Seams
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 23–26
, SPE Paper No. 20568-MS.
9.
Rushing
,
J. A.
,
Blasingame
,
T. A.
,
Johnston
,
J. L.
, and
Lee
,
W. J.
,
1991
, “
Slug Testing in Multiple Coal Seams Intersected by a Single, Vertical Fracture
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 6–9
, SPE Paper No. 22945-MS.
10.
Nie
,
R. S.
,
Meng
,
Y. F.
,
Guo
,
J. C.
, and
Jia
,
Y. L.
,
2012
, “
Modeling Transient Flow Behavior of a Horizontal Well in a Coal Seam
,”
Int. J. Coal. Geol.
,
92
, pp.
54
68
. 10.1016/j.coal.2011.12.005
11.
Yu-Long
,
Z.
,
Lie-Hui
,
Z.
,
Guo-Qing
,
F.
,
Bo-Ning
,
Z.
, and
Bo
,
K.
,
2016
, “
Performance Analysis of Fractured Wells With Stimulated Reservoir Volume in Coal Seam Reservoirs
,”
Oil. Gas. Sci. Technol.
,
71
(
1
), p.
8
. 10.2516/ogst/2014026
12.
Yang
,
D.
,
Zhang
,
F.
,
Styles
,
J. A.
, and
Gao
,
J.
,
2015
, “
Performance Evaluation of a Horizontal Well With Multiple Fractures by Use of a Slab-Source Function
,”
SPE J.
,
20
(
3
), pp.
652
662
. 10.2118/173184-PA
13.
Zhao
,
Y.
,
Zhang
,
L.
,
Xiong
,
Y.
,
Zhou
,
Y.
,
Liu
,
Q.
, and
Chen
,
D.
,
2016
, “
Pressure Response and Production Performance for Multi-Fractured Horizontal Wells With Complex Seepage Mechanism in Box-Shaped Shale Gas Reservoir
,”
J. Nat. Gas. Sci. Eng.
,
32
, pp.
66
80
. 10.1016/j.jngse.2016.04.037
14.
Chen
,
Z.
,
Liao
,
X.
,
Zhao
,
X.
,
Dou
,
X.
,
Zhu
,
L.
, and
Sanbo
,
L.
,
2017
, “
A Finite-Conductivity Horizontal-Well Model for Pressure-Transient Analysis in Multiple-Fractured Horizontal Wells
,”
SPE J.
,
22
, pp.
1
112
. 10.2118/179543-PA
15.
Zeng
,
J.
,
Wang
,
X.
,
Guo
,
J.
,
Zeng
,
F.
, and
Zhang
,
Q.
,
2018
, “
Composite Linear Flow Model for Multi-Fractured Horizontal Wells in Tight Sand Reservoirs With the Threshold Pressure Gradient
,”
J. Pet. Sci. Eng.
,
165
, pp.
890
912
. 10.1016/j.petrol.2017.12.095
16.
Stalgorova
,
K.
, and
Mattar
,
L.
,
2013
, “
Analytical Model for Unconventional Multifractured Composite Systems
,”
SPE Reserv. Eval. Eng.
,
16
(
3
), pp.
246
256
. 10.2118/162516-PA
17.
Aprilian
,
S.
,
Abdassah
,
D.
,
Mucharam
,
L.
, and
Sumantri
,
R.
,
1993
, “
Application of Fractal Reservoir Model for Interference Test Analysis in Kamojang Geothermal Field (Indonesia)
,”
SPE Annual Technical Conference and Exhibition
,
Houston, TX
,
Oct. 3–6
, SPE Paper No. 26465-MS.
18.
Sheng
,
G.
,
Su
,
Y.
,
Wang
,
W.
,
Zhang
,
Q.
, and
Liu
,
J.
,
2015
, “
Flow Behavior Analysis and Application of Complex-Flow Model in Explosive Fracturing Well Using Fractal Theory
,”
SPE Middle East Oil & Gas Show and Conference
,
Manama, Bahrain
,
Mar. 8–11
, SPE Paper No. 172761-MS.
19.
Zhang
,
Q.
,
Su
,
Y.
,
Wang
,
W.
, and
Sheng
,
G.
,
2015
, “
A New Semi-Analytical Model for Simulating the Effectively Stimulated Volume of Fractured Wells in Tight Reservoirs
,”
J. Nat. Gas. Sci. Eng.
,
27
, pp.
1834
1845
. 10.1016/j.jngse.2015.11.014
20.
Chang
,
J.
, and
Yortsos
,
Y. C.
,
1990
, “
Pressure Transient Analysis of Fractal Reservoirs
,”
SPE Form. Eval.
,
5
(
1
), pp.
31
38
. 10.2118/18170-PA
21.
Beier
,
R. A.
, “
Pressure Transient Model of a Vertically Fractured Well in a Fractal Reservoir
,”
SPE Form. Eval.
,
9
(
2
), pp.
122
128
. 10.2118/20582-PA
22.
Flamenco-Lopez
,
F.
, and
Camacho-Velazquez
,
R.
,
2011
, “
Fractal Transient Pressure Behavior of Naturally Fractured Reservoirs
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 30–Oct. 3
, SPE Paper No. 71591-MS.
23.
Zhao
,
Y.
, and
Zhang
,
L.
,
2011
, “
Solution and Type Curve Analysis of Fluid Flow Model for Fractal Reservoir
,”
World J. Mech.
,
1
(
5
), p.
209
216
. 10.4236/wjm.2011.15027
24.
Tan
,
X. H.
,
Li
,
X. P.
,
Liu
,
J. Y.
,
Tang
,
C.
, and
Li
,
J. M.
,
2013
, “
Pressure Transient Analysis of Dual Fractal Reservoir
,”
J. Appl. Math.
,
2013
, pp.
433
444
.
25.
Wang
,
W.
,
Su
,
Y.
,
Sheng
,
G.
,
Cossio
,
M.
, and
Shang
,
Y.
,
2015
, “
A Mathematical Model Considering Complex Fractures and Fractal Flow for Pressure Transient Analysis of Fractured Horizontal Wells in Unconventional Reservoirs
,”
J. Nat. Gas. Sci. Eng.
,
23
, pp.
139
147
. 10.1016/j.jngse.2014.12.011
26.
Wang
,
W.
,
Shahvali
,
M.
, and
Su
,
Y.
,
2015
, “
A Semi-Analytical Fractal Model for Production From Tight Oil Reservoirs With Hydraulically Fractured Horizontal Wells
,”
Fuel
,
158
, pp.
612
618
. 10.1016/j.fuel.2015.06.008
27.
Wang
,
Z.
,
Yang
,
Z.
,
Ding
,
Y.
,
He
,
Y.
,
Lin
,
W.
,
Wang
,
W.
, and
Sheng
,
G.
,
2019
, “
A Multi-Linear Fractal Model for Pressure Transient Analysis of Multiple Fractured Horizontal Wells in Tight Oil Reservoirs Including Imbibition
,”
Fractals
,
27
(
1
), p.
1940004
. 10.1142/S0218348X19400048
28.
Raghavan
,
R.
,
2011
, “
Fractional Derivatives: Application to Transient Flow
,”
J. Pet. Sci. Eng.
,
80
(
1
), pp.
7
13
. 10.1016/j.petrol.2011.10.003
29.
Raghavan
,
R.
,
2012
, “
Fractional Diffusion: Performance of Fractured Wells
,”
J. Pet. Sci. Eng.
,
92
, pp.
167
173
. 10.1016/j.petrol.2012.06.003
30.
Ren
,
J.
, and
Guo
,
P.
,
2015
, “
Anomalous Diffusion Performance of Multiple Fractured Horizontal Wells in Shale Gas Reservoirs
,”
J. Nat. Gas. Sci. Eng.
,
26
, pp.
642
651
. 10.1016/j.jngse.2015.07.003
31.
Wang
,
J.
,
Wei
,
Y.
, and
Qi
,
Y.
,
2016
, “
Semi-Analytical Modeling of Flow Behavior in Fractured Media With Fractal Geometry
,”
Transp. Porous Med.
,
112
(
3
), pp.
707
736
. 10.1007/s11242-016-0671-5
32.
Metzler
,
R.
,
Glöckle
,
W. G.
, and
Nonnenmacher
,
T. F.
,
1994
, “
Fractional Model Equation for Anomalous Diffusion
,”
Phys. A
,
211
(
1
), pp.
13
24
. 10.1016/0378-4371(94)90064-7
33.
Park
,
H. W.
,
Choe
,
J.
, and
Kang
,
J. M.
,
2000
, “
Pressure Behavior of Transport in Fractal Porous Media Using a Fractional Calculus Approach
,”
Energy Sources
,
22
(
10
), pp.
881
890
. 10.1080/00908310051128237
34.
Ozcan
,
O.
,
Sarak
,
H.
,
Ozkan
,
E.
, and
Raghavan
,
R. S.
,
2014
, “
A Trilinear Flow Model for a Fractured Horizontal Well in a Fractal Unconventional Reservoir
,”
SPE Annual Technical Conference and Exhibition
,
Amsterdam, The Netherlands
,
Oct. 27–29
, SPE Paper No. 170971-MS.
35.
Razminia
,
K.
,
Razminia
,
A.
, and
Torres
,
D. F.
,
2015
, “
Pressure Responses of a Vertically Hydraulic Fractured Well in a Reservoir With Fractal Structure
,”
Appl. Math. Comput.
,
257
, pp.
374
380
. 10.1016/j.amc.2014.12.124
36.
Tao
,
H.
,
Zhang
,
L.
,
Liu
,
Q.
,
Deng
,
Q.
,
Luo
,
M.
, and
Zhao
,
Y.
,
2018
, “
An Analytical Flow Model for Heterogeneous Multi-Fractured Systems in Shale Gas Reservoirs
,”
Energies
,
11
(
12
), p.
3422
. 10.3390/en11123422
37.
Zhang
,
Z.
,
Zhang
,
R.
,
Wu
,
S.
,
Deng
,
J.
,
Zhang
,
Z.
, and
Xie
,
J.
,
2019
, “
The Stress Sensitivity and Porosity Sensitivity of Coal Permeability at Different Depths: A Case Study in the Pingdingshan Mining Area
,”
Rock Mech. Rock Eng.
,
52
(
5
), pp.
1539
1563
. 10.1007/s00603-018-1633-8
38.
Acuna
,
J. A.
, and
Yortsos
,
Y. C.
,
1995
, “
Application of Fractal Geometry to the Study of Networks of Fractures and Their Pressure Transient
,”
Water Resour. Res.
,
31
(
3
), pp.
527
540
. 10.1029/94WR02260
39.
Chen
,
C.
, and
Raghavan
,
R.
,
2015
, “
Transient Flow in a Linear Reservoir for Space–Time Fractional Diffusion
,”
J. Pet. Sci. Eng.
,
128
, pp.
194
202
. 10.1016/j.petrol.2015.02.021
40.
Caputo
,
M.
,
1967
, “
Linear Models of Dissipation Whose Q Is Almost Frequency Independent—II
,”
Geophys. J. Int.
,
13
(
5
), pp.
529
539
. 10.1111/j.1365-246X.1967.tb02303.x
41.
Pedrosa, Jr.
O. A.
,
1986
, “
Pressure Transient Response in Stress-Sensitive Formations
,”
SPE California Regional Meeting
,
Oakland, CA
,
Apr. 2–4
, SPE Paper No. 15115-MS.
42.
Razminia
,
K.
,
Razminia
,
A.
, and
Tenreiro Machado
,
J. A.
,
2016
, “
Analytical Solution of Fractional Order Diffusivity Equation With Wellbore Storage and Skin Effects
,”
J. Comput. Nonlinear Dyn.
,
11
(
1
), pp.
1
. 10.1115/1.4030534
43.
Wang
,
H. T.
,
2014
, “
Performance of Multiple Fractured Horizontal Wells in Shale Gas Reservoirs With Consideration of Multiple Mechanisms
,”
J. Hydrol.
,
510
, pp.
299
312
. 10.1016/j.jhydrol.2013.12.019
You do not currently have access to this content.