Abstract

Fuel formulation with the particular selection of fuel components is a promising approach that offers the reduction of harmful emissions without altering the combustion system performance. Each fuel component has its own combustion characteristics and hence contribution to emissions. Aromatic is one of the main components of fossil-based fuels and has a strong correlation with the formation of particulate matter (PM) emissions. Besides, aromatics presence in fuel is essential for the compatibility of fuel with the combustion system and maintaining the energy density of the fuel. In this regard, a Rolls-Royce combustor rig was used to test 16 aromatics blended with jet fuels in three different proportions. Moreover, a novel approach of flame luminosity imaging is employed to measure the PM emissions through the soot propensity profile. The results show that PM emissions increase with the proportional increase of aromatics. The di- and cyclo-aromatics produced significantly higher PM emissions compared to alkyl-benzenes. 3-Isopropylcumene tends to lowest PM formation and thus is a consideration as a selection of aromatic type in future fuels for lower PM emissions. Furthermore, it was also observed that PM number concentration measured by the extractive method with DMS 500 instrument correlates well with imaging methods for all the tested fuels. The present study provides information on particular selection of aromatic for future fuel development.

References

1.
Feser
,
J.
, and
Gupta
,
A. K.
,
2020
, “
Performance and Emissions of Drop-In Aviation Biofuels in a Lab-Scale Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042103
. 10.1115/1.4048243
2.
Turkyilmazoglu
,
M.
,
2020
, “
Combustion of a Solid Fuel Material at Motion
,”
Energy
,
203
, p.
117837
. 10.1016/j.energy.2020.117837
3.
Ubogu
,
E. A.
,
Cronly
,
J.
,
Khandelwal
,
B.
, and
Roy
,
S.
,
2018
, “
Determination of the Effective Density and Fractal Dimension of PM Emissions From an Aircraft Auxiliary Power Unit
,”
J. Environ. Sci. China
,
74
, pp.
11
18
. 10.1016/j.jes.2018.01.027
4.
Zheng
,
L.
,
Ling
,
C.
,
Ubogu
,
E. A.
,
Cronly
,
J.
,
Ahmed
,
I.
,
Zhang
,
Y.
, and
Khandelwal
,
B.
,
2018
, “
Effects of Alternative Fuel Properties on Particulate Matter Produced in a Gas Turbine Combustor
,”
Energy Fuels
,
32
(
9
), pp.
9883
9897
. 10.1021/acs.energyfuels.8b01442
5.
Sadiq
,
A. M.
,
Sleiti
,
A. K.
, and
Ahmed
,
S. F.
,
2020
, “
Turbulent Flames in Enclosed Combustion Chambers: Characteristics and Visualization—A Review
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
080801
. 10.1115/1.4046460
6.
Siegmann
,
K.
,
Sattler
,
K.
, and
Siegmann
,
H. C.
,
2002
, “
Clustering at High Temperatures: Carbon Formation in Combustion
,”
J. Electron Spectrosc. Relat. Phenom.
,
126
(
1
), pp.
191
202
. 10.1016/S0368-2048(02)00152-4
7.
McEnally
,
C. S.
,
Pfefferle
,
L. D.
,
Atakan
,
B.
, and
Kohse-Höinghaus
,
K.
,
2006
, “
Studies of Aromatic Hydrocarbon Formation Mechanisms in Flames: Progress Towards Closing the Fuel Gap
,”
Prog. Energy Combust. Sci.
,
32
(
3
), pp.
247
294
. 10.1016/j.pecs.2005.11.003
8.
Chen
,
D.
,
Zainuddin
,
Z.
,
Yapp
,
E.
,
Akroyd
,
J.
,
Mosbach
,
S.
, and
Kraft
,
K.
,
2013
, “
A Fully Coupled Simulation of PAH and Soot Growth With a Population Balance Model
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1827
1835
. 10.1016/j.proci.2012.06.089
9.
Saffaripour
,
M.
,
Zabeti
,
P.
,
Kholghy
,
M.
, and
Thomson
,
M. J.
,
2011
, “
An Experimental Comparison of the Sooting Behavior of Synthetic jet Fuels
,”
Energy Fuels
,
25
(
12
), pp.
5584
5593
. 10.1021/ef201219v
10.
Braun-Unkhoff
,
M.
,
Kathrotia
,
T.
,
Rauch
,
B.
, and
Riedel
,
U.
,
2016
, “
About the Interaction Between Composition and Performance of Alternative Jet Fuels
,”
CEAS Aeronaut. J.
,
7
(
1
), pp.
83
94
. 10.1007/s13272-015-0178-8
11.
Singh
,
A. P.
,
Bajpai
,
N.
, and
Agarwal
,
A. K.
,
2018
, “
Combustion Mode Switching Characteristics of a Medium-Duty Engine Operated in Compression Ignition/PCCI Combustion Modes
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092201
. 10.1115/1.4039741
12.
Lobo
,
P.
,
Christie
,
S.
,
Khandelwal
,
B.
,
Blakey
,
S. G.
, and
Raper
,
D. W.
,
2015
, “
Evaluation of Non-Volatile Particulate Matter Emission Characteristics of an Aircraft Auxiliary Power Unit With Varying Alternative Jet Fuel Blend Ratios
,”
Energy Fuels
,
29
(
11
), pp.
7705
7711
. 10.1021/acs.energyfuels.5b01758
13.
Silverman
,
B.
,
1980
, “
Effects of High Aromatic Aviation Fuel on Sealant Systems
,”
SAE Transactions
,
89
(
3
), pp.
2646
2650
. http://www.jstor.org/stable/44729879
14.
Chen
,
K.
,
Liu
,
H.
, and
Xia
,
Z.
,
2013
, “
The Impacts of Aromatic Contents in Aviation Jet Fuel on the Volume Swell of the Aircraft Fuel Tank Sealants
,”
SAE Int. J. Aerosp.
,
6
(
1
), pp.
350
354
. 10.4271/2013-01-9001
15.
Khandelwal
,
B.
,
Roy
,
S.
,
Lord
,
C.
, and
Blakey
,
S.
,
2014
, “
Comparison of Vibrations and Emissions of Conventional Jet Fuel With Stressed 100% SPK and Fully Formulated Synthetic Jet Fuel
,”
Aerospace
,
1
(
2
), pp.
52
66
. 10.3390/aerospace1020052
16.
ASTM D7655-12
,
2019
,
Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons BT—Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons
,
ASTM International
,
West Conshohocken, PA
.
17.
Ruslan
,
M.
,
Ahmed
,
I.
, and
Khandelwal
,
B.
,
2016
, “
Evaluating Effects of Fuel Properties on Smoke Emissions
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. Volume 4A: Combustion, Fuels and Emissions
,
Seoul, South Korea
,
June 13–17
,
ASME
, p.
V04AT04A046
. https://doi.org/10.1115/GT2016-56791.
18.
Duvvuri
,
P. P.
,
Sukumaran
,
S.
,
Shrivastava
,
R. K.
, and
Sreedhara
,
S.
,
2019
, “
Modeling the Effect of Parametric Variations on Soot Particle Size Distribution in a Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032201
. 10.1115/1.4044563
19.
Lim
,
S.
,
Ahn
,
T.
,
Lee
,
S.
, and
Park
,
S.
,
2017
, “
Optical Measurement of Volume Fraction and Organic Mass Fraction of Ultra-Fine Soot Particles Emitted From Inverse Diffusion Flames
,”
Fuel
,
210
, pp.
455
462
. 10.1016/j.fuel.2017.08.113
20.
Scenna
,
R.
, and
Gupta
,
A. K.
,
2018
, “
The Influence of the Distributed Reaction Regime on Fuel Reforming Conditions
,”
ASME J. Energy Resour. Technol.
,
140
(
12
), p.
122002
. 10.1115/1.4040404
21.
Balakrishnan
,
A.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2015
, “
Combustion Characteristics of Partially Premixed Prevaporized Palm Methyl Ester and Jet A Fuel Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012202
. 10.1115/1.4031966
22.
Kitsopanidis
,
I.
, and
Cheng
,
W. K.
,
2006
, “
Soot Formation Study in a Rapid Compression Machine
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
942
949
. 10.1115/1.2180279
23.
Scenna
,
R.
, and
Gupta
,
A. K.
,
2015
, “
Preheats Effects on JP8 Reforming Under Volume Distributed Reaction Conditions
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032202
. 10.1115/1.4032140
24.
Lobo
,
P.
,
Durdina
,
L.
,
Smallwood
,
G. J.
,
Rindlisbacher
,
T.
,
Siegerist
,
F.
,
Black
,
E. A.
,
Yu
,
Z.
,
Mensah
,
A. A.
,
Hagen
,
D. E.
,
Miake-Lye
,
R. C.
,
Thomson
,
K. A.
,
Brem
,
B. T.
,
Corbin
,
J. C.
,
Abegglen
,
M.
,
Sierau
,
B.
,
Whitefield
,
P. D.
, and
Wang
,
J.
,
2015
, “
Measurement of Aircraft Engine Non-Volatile PM Emissions: Results of the Aviation-Particle Regulatory Instrumentation Demonstration Experiment (A-PRIDE) 4 Campaign
,”
Aerosol Sci. Technol.
,
49
(
7
), pp.
472
484
. 10.1080/02786826.2015.1047012
25.
Krabicka
,
J.
, and
Lu
,
G.
,
2009
, “
Visualisation and Characterisation of Flame Radical Emissions Through Intensified Spectroscopic Imaging
,”
J. Phys.: Conf. Ser.
,
178
, pp.
1
5
. 10.1088/1742-6596/178/1/012041
26.
Kim
,
W.
,
Sivathanu
,
Y.
, and
Gore
,
J. P.
,
2001
, “
Characterization of Spectral Radiation Intensities From Standard Test Fires for Fire Detection
,”
NIST Special Publication
,
Gaithersburg, MD
,
Mar. 25–28
.
27.
Bäckström
,
D.
,
Gunnarsson
,
A.
,
Gall
,
D.
,
Pei
,
X.
,
Johansson
,
P.
,
Andersson
,
K.
,
Pathak
,
R. K.
, and
Pettersson
,
J. B. C.
,
2017
, “
Measurement of the Size Distribution, Volume Fraction and Optical Properties of Soot in an 80 kW Propane Flame
,”
Combust. Flame
,
186
, pp.
325
334
. 10.1016/j.combustflame.2017.08.023
28.
Botero
,
M. L.
,
Mosbach
,
S.
, and
Kraft
,
M.
,
2016
, “
Sooting Tendency and Particle Size Distributions of n-Heptane/Toluene Mixtures Burned in a Wick-Fed Diffusion Flame
,”
Fuel
,
169
, pp.
111
119
. 10.1016/j.fuel.2015.12.014
29.
Fujino
,
R.
,
Aoyagi
,
Y.
,
Osada
,
H.
,
Yamaguchi
,
T.
, and
Mizuno
,
S.
,
2009
, “
Direct Observation of Clean Diesel Combustion Using a Bore Scope in a Single Cylinder HDDE
,”
SAE Technical Paper
,
2009-01-0645
. 10.4271/2009-01-0645
30.
Jiotode
,
Y.
, and
Agarwal
,
A. K.
,
2016
, “
Endoscopic Combustion Visualization for Spatial Distribution of Soot and Flame Temperature in a Diesohol Fueled Compression Ignition Engine
,”
Energy Fuels
,
30
(
11
), pp.
9850
9858
. 10.1021/acs.energyfuels.6b01585
31.
Botero
,
M. L.
,
Mosbach
,
S.
, and
Kraft
,
M.
,
2014
, “
Sooting Tendency of Paraffin Components of Diesel and Gasoline in Diffusion Flames
,”
Fuel
,
126
, pp.
8
15
. 10.1016/j.fuel.2014.02.005
32.
Botero
,
M. L.
,
Mosbach
,
S.
,
Akroyd
,
J.
, and
Kraft
,
M.
,
2015
, “
Sooting Tendency of Surrogates for the Aromatic Fractions of Diesel and Gasoline in a Wick-Fed Diffusion Flame
,”
Fuel
,
153
, pp.
31
39
. 10.1016/j.fuel.2015.02.108
33.
Witkowski
,
D.
,
Kondo
,
K.
,
Vishwanathan
,
G.
, and
Rothame
,
D.
,
2013
, “
Evaluation of the Sooting Properties of Real Fuels and Their Commonly Used Surrogates in a Laminar Co-Flow Diffusion Flame
,”
Combust. Flame
,
160
(
6
), pp.
1129
1141
. 10.1016/j.combustflame.2013.01.027
34.
Huang
,
H.
, and
Zhang
,
Y.
,
2018
, “
Flame Colour Characterization in the Visible and Infrared Spectrum Using a Digital Camera and Image Processing
,”
Meas. Sci. Technol.
,
19
(
8
), pp.
085406-1
085406-9
. 10.1088/0957-0233/19/8/085406
35.
Huang
,
H. W.
, and
Zhang
,
Y.
,
2011
, “
Digital Colour Image Processing Based Measurement of Premixed CH 4+ Air and C 2 H 4+ Air Flame Chemiluminescence
,”
Fuel
,
90
(
1
), pp.
48
53
. 10.1016/j.fuel.2010.07.050
36.
Ng
,
W. B.
,
Clough
,
E.
,
Syed
,
K. J.
, and
Zhang
,
Y.
,
2004
, “
The Combined Investigation of the Flame Dynamics of an Industrial Gas Turbine Combustor Using High-Speed Imaging and an Optically Integrated Data Collection Method
,”
Meas. Sci. Technol.
,
15
(
11
), pp.
2303
2309
. 10.1088/0957-0233/15/11/016
37.
Zheng
,
L.
,
Faik
,
A.
, and
Zhang
,
Y.
,
2016
, “
Flame Colour Analysis for the Droplet Combustion of Water-in-Diesel Emulsions
,”
12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
,
Malaga, Spain
,
July 11–13
.
38.
Symonds
,
J. P. R.
,
Reavell
,
K. S. J.
,
Olfert
,
J. S.
,
Campbell
,
B. W.
, and
Swift
,
S. J.
,
2007
, “
Diesel Soot Mass Calculation in Real-Time With a Differential Mobility Spectrometer
,”
J. Aerosol Sci.
,
38
(
1
), pp.
52
68
. 10.1016/j.jaerosci.2006.10.001
39.
Rye
,
L.
,
Lobo
,
P.
,
Williams
,
P. I.
,
Uryga-Bugajska
,
I.
,
Christie
,
S.
,
Wilson
,
C.
,
Hagen
,
D.
,
Whitefield
,
P.
,
Blakey
,
S.
,
Coe
,
H.
,
Raper
,
D.
, and
Pourkashanian
,
M.
,
2012
, “
Inadequacy of Optical Smoke Measurements for Characterization of Non-Light Absorbing Particulate Matter Emissions From Gas Turbine Engines
,”
Combust. Sci. Technol.
,
184
(
12
), pp.
2068
2083
. 10.1080/00102202.2012.697499
40.
Petzold
,
A.
,
Marsh
,
R.
,
Johnson
,
M.
,
Miller
,
M.
,
Sevcenco
,
Y.
,
Delhaye
,
D.
,
Ibrahim
,
A.
,
Williams
,
P.
,
Bauer
,
H.
,
Crayford
,
A.
,
Bachalo
,
W. D.
, and
Raper
,
D.
,
2011
, “
Evaluation of Methods for Measuring Particulate Matter Emissions From Gas Turbines
,”
Environ. Sci. Technol.
,
45
(
8
), pp.
3562
3568
. 10.1021/es103969v
41.
McKerrell
,
E. H.
,
1993
, “
Determination of Aromatic Hydrocarbon Types in Diesel Fuels: An Assessment of Method IP391/90 and a Proposed Modification
,”
Fuel
,
72
(
10
), pp.
1403
1409
. 10.1016/0016-2361(93)90416-Y
42.
Rye
,
L.
, and
Wilson
,
C.
,
2012
, “
The Influence of Alternative Fuel Composition on Gas Turbine Ignition Performance
,”
Fuel
,
96
, pp.
277
283
. 10.1016/j.fuel.2011.12.047
43.
Zheng
,
L.
,
Cronly
,
J.
,
Ubogu
,
E.
,
Ahmed
,
I.
,
Zhang
,
Y.
, and
Khandelwal
,
B.
,
2019
, “
Experimental Investigation on Alternative Fuel Combustion Performance Using a Gas Turbine Combustor
,”
Appl. Energy
,
238
, pp.
1530
1542
. 10.1016/j.apenergy.2019.01.175
44.
Zheng
,
L.
, and
Zhang
,
Y.
,
2015
, “
High Speed Digital Imaging for Flame Studies: Potentials and Limitations
Energy Procedia
,
66
, pp.
237
240
. 10.1016/j.egypro.2015.02.039
45.
Zheng
,
L.
,
2018
, “
Flame Visualization of Toluene, Indene and Methylnaphthalene Blending With Base Solvent at LBO
,” https://youtu.be/XOp1FZOdhTI
46.
Wang
,
Y.
,
Zheng
,
L.
,
Woolley
,
R.
, and
Zhang
,
Y.
,
2016
, “
Investigation of Ignition Process From Visible to Infrared by a High Speed Colour Camera
,”
Fuel
,
185
, pp.
500
507
. 10.1016/j.fuel.2016.08.010
47.
DeWitt
,
M. J.
,
Corporan
,
E.
,
Graham
,
J.
, and
Minus
,
D.
,
2008
, “
Effects of Aromatic Type and Concentration in Fischer–Tropsch Fuel on Emissions Production and Material Compatibility
,”
Energy Fuels
,
22
(
4
), pp.
2411
2418
. 10.1021/ef8001179
48.
Khandelwal
,
B.
,
Cronly
,
J.
,
Ahmed
,
I. S.
,
Wijesinghe
,
C. J.
, and
Lewis
,
C.
,
2019
, “
The Effect of Alternative Fuels on Gaseous and Particulate Matter (PM) Emission Performance in an Auxiliary Power Unit (APU)
,”
Aeronaut. J.
,
123
(
1263
), pp.
1
19
. 10.1017/aer.2019.16
49.
Almohammadi
,
B. A.
,
Singh
,
P.
,
Sharma
,
S.
,
Kumar
,
S.
, and
Khandelwal
,
B.
,
2020
, “
Impact of Alkylbenzenes in Formulated Surrogate Fuel on Characteristics of Compression Ignition Engine
,”
Fuel
,
266
, p.
116981
. 10.1016/j.fuel.2019.116981
50.
Singh
,
P.
,
Sharma
,
S.
,
Almohammadi
,
B. A.
,
Khandelwal
,
B.
, and
Kumar
,
S.
,
2020
, “
Applicability of Aromatic Selection Towards Newer Formulated Fuels for Regulated and Unregulated Emissions Reduction in CI Engine
,”
Fuel Process. Technol.
,
209
, p.
106548
. 10.1016/j.fuproc.2020.106548
51.
Sharma
,
S.
,
Singh
,
P.
,
Almohammadi
,
B. A.
,
Khandelwal
,
B.
, and
Kumar
,
S.
,
2020
, “
Testing of Formulated Fuel With Variable Aromatic Type and Contents in a Compression-Ignition Engine
,”
Fuel Process. Technol.
,
208
, p.
106413
. 10.1016/j.fuproc.2020.106413
52.
Kumar
,
N.
,
Sonthalia
,
A.
, and
Koul
,
R.
,
2020
, “
Optimization of the Process Parameters for Hydrotreating Used Cooking Oil by the Taguchi Method and Fuzzy Logic
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
123006
. 10.1115/1.4047405
You do not currently have access to this content.