Abstract

Three reacting jet-in-crossflow (JiC) methane/air flames were numerically investigated in a lean axially staged combustor at a pressure of five atmospheres. A detailed chemistry Star-CCM+ computational fluid dynamics (CFD) model was used with 53 species considered and the result of turbulence-governed finite-rate modeling was validated with in-house experimental data. An optically accessible test section features three side windows, allowing local flow and flame analysis with particle image velocimetry (PIV) and CH* chemiluminescence as well as pressure, temperature, and species exit measurements. The research objective was to predict and verify NOx formation of the premixed 12.7 mm axial jet. Three headend temperature levels were investigated along with three premixed jets at lean (φJet = 0.75), near-stoichiometric (φJet = 1.07), and rich (φJet = 1.78) axial fuel line equivalence ratio. Based on the matching exit emission concentration, global emission benefits were investigated by adjustment of the fuel stratification. The perfectly premixed methane/air flames of this study were shown to ignite at the lee-side of the jet. For the elevated headend temperature level T = 1800 K, the flame extended beyond the windward jet trajectory and caused high axial NO production. For industry application, a firing temperature of 1920 K was achieved with a NOx optimized fuel split of 25%, combining a lean headend (φHeadend = 0.61) with a rich (φJet = 1.78) jet equivalence ratio. This operating point allowed minimization of the combustor residence time at temperatures above 1700 K as well as combustion in a compact flame at the jet lee-side along the counter rotating vortex pair.

References

1.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion Alternative Fuels and Emissions
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
2.
Pandaa
,
P. P.
,
Busari
,
O.
,
Roac
,
M.
, and
Lucht
,
R. P.
,
2019
, “
Flame Stabilization Mechanism in Reacting Jets in Swirling Vitiated Crossflow
,”
Combust. Flame
,
207
, pp.
302
313
. 10.1016/j.combustflame.2019.06.005
3.
Schulz
,
O.
,
Piccoli
,
E.
,
Felden
,
A.
,
Staffelbach
,
G.
, and
Noiray
,
N.
,
2019
, “
Autoignition-Cascade in the Windward Mixing Layer of a Premixed Jet in Hot Vitiated Crossflow
,”
Combust. Flame
,
201
, pp.
215
233
. 10.1016/j.combustflame.2018.11.012
4.
Bandarua
,
R. V.
, and
Turns
,
S. R.
,
2000
, “
Turbulent Jet Flames in a Crossflow: Effects of Some Jet, Crossflow, and Pilot-Flame Parameters on Emissions
,”
Combust. Flame
,
121
(
1–2
), pp.
137
151
. 10.1016/S0010-2180(99)00166-2
5.
Karim
,
H.
,
Natarajan
,
J.
,
Narra
,
V.
,
Cai
,
J.
,
Rao
,
S.
,
Kegley
,
J.
, and
Citeno
,
J.
,
2017
, “
Staged Combustion System for Improved Emissions Operability & Flexibility for 7HA Class Heavy Duty Gas Turbine Engine
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
. 10.1115/GT2017-63998
6.
Nair
,
V.
,
Wilde
,
B.
,
Emerson
,
B.
, and
Lieuwen
,
T.
,
2019
, “
Shear Layer Dynamics in a Reacting Jet in Crossflow
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5173
5180
. 10.1016/j.proci.2018.06.031
7.
Nair
,
V.
,
Sirignano
,
M.
,
Emerson
,
B.
,
Halls
,
B.
,
Jiang
,
N.
,
Felver
,
J.
,
Roy
,
S.
,
Gord
,
J.
, and
Lieuwen
,
T.
,
2019
, “
Counter Rotating Vortex Pair Structure in a Reacting Jet in Crossflow
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
1489
1496
. 10.1016/j.proci.2018.06.059
8.
Muppidi
,
S.
, and
Mahesh
,
K.
,
2005
, “
Study of Trajectories of Jets in Crossflow Using Direct Numerical Simulations
,”
J. Fluid Mech.
,
530
, pp.
81
100
. 10.1017/S0022112005003514
9.
Schlegel
,
F.
, and
Ghoniem
,
A. F.
,
2014
, “
Simulation of a High Reynolds Number Reactive Transverse Jet and the Formation of a Triple Flame
,”
Combust. Flame
,
161
(
4
), pp.
971
986
. 10.1016/j.combustflame.2013.10.006
10.
Yi
,
T.
,
Halls
,
B. R.
,
Jiang
,
N.
,
Felver
,
J.
,
Sirignano
,
M.
,
Emerson
,
B. L.
,
Lieuwen
,
T. C.
,
Gord
,
J. R.
, and
Roy
,
S.
,
2019
, “
Autoignition-Controlled Flame Initiation and Flame Stabilization in a Reacting Jet in Crossflow
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2109
2116
. 10.1016/j.proci.2018.06.057
11.
Lin
,
H.-C.
,
Cheng
,
T.-S.
,
Chen
,
B.-C.
,
Ho
,
C.-C.
, and
Chao
,
Y.-C.
,
2009
, “
A Comprehensive Study of Two Interactive Parallel Premixed Methane Flames on Lean Combustion
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
995
1002
. 10.1016/j.proci.2008.07.030
12.
Jaravel
,
T.
,
Labahn
,
J.
,
Sforzo
,
B.
,
Seitzman
,
J.
, and
Ihme
,
M.
,
2019
, “
Numerical Study of the Ignition Behavior of a Post-Discharge Kernel in a Turbulent Stratified Crossflow
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5065
5072
. 10.1016/j.proci.2018.06.226
13.
Steinberg
,
A. M.
,
Sadanandan
,
R.
,
Dem
,
C.
,
Kutne
,
P.
, and
Meier
,
W.
,
2013
, “
Structure and Stabilization of Hydrogen Jet Flames in Cross-Flows
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1499
1507
. 10.1016/j.proci.2012.06.026
14.
Sullivan
,
R.
,
Wilde
,
B.
,
Noble
,
D. R.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Time-Averaged Characteristics of a Reacting Fuel Jet in Vitiated Cross-Flow
,”
Combust. Flame
,
161
(
7
), pp.
1792
1803
. 10.1016/j.combustflame.2013.12.022
15.
Dayton
,
J. W.
,
Linevitch
,
K.
, and
Cetegen
,
B. M.
,
2019
, “
Ignition and Flame Stabilization of a Premixed Reacting Jet in Vitiated Crossflow
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2417
2424
. 10.1016/j.proci.2018.08.051
16.
Marr
,
K. C.
,
Clemens
,
N. T.
, and
Ezekoye
,
O. A.
,
2012
, “
Mixing Characteristics and Emissions of Strongly-Forced Non-Premixed and Partially-Premixed Jet Flames in Crossflow
,”
Combust. Flame
,
159
(
2
), pp.
707
721
. 10.1016/j.combustflame.2011.08.008
17.
Prathap
,
C.
,
Galeazzo
,
F. C. C.
,
Kasabov
,
P.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
,
Beck
,
C.
,
Krebs
,
W.
, and
Wegner
,
B.
,
2012
, “
Analysis of NOx Formation in an Axially Staged Combustion System at Elevated Pressure Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
031507
. 10.1115/1.4004720
18.
Sirignano
,
M. D.
,
Nair
,
V.
,
Emerson
,
B.
,
Seitzman
,
J.
, and
Lieuwen
,
T. C.
,
2019
, “
Nitrogen Oxide Emissions From Rich Premixed Reacting Jets in a Vitiated Crossflow
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5393
5400
. 10.1016/j.proci.2018.05.088
19.
Hayashi
,
S.
, and
Yamada
,
H.
,
2000
, “
NOX Emissions in Combustion of Lean Premixed Mixtures Injected Into Hot Burned Gas
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
2443
2449
. 10.1016/S0082-0784(00)80658-X
20.
Lawal
,
M. S.
,
Fairweather
,
M.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Williams
,
A.
,
2010
, “
Numerical Study of Emission Characteristics of a Jet Flame in Cross-Flow
,”
Combust. Sci. Technol.
,
182
(
10
), pp.
1491
1510
. 10.1080/00102202.2010.496379
21.
Hoferichter
,
V.
,
Ahrens
,
D.
,
Kolb
,
M.
, and
Sattelmayer
,
T.
,
2014
, “
A Reactor Model for the NOx Formation in a Reacting Jet in Hot Cross Flow Under Atmospheric and High Pressure Conditions
,”
Proceedings of ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
.
22.
Ahrens
,
D.
,
Kolb
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2014
, “
NOX Formation in a Reacting Premixed Jet in Hot Cross Flow
,”
Proceedings of ASME Turbo Expo
,
Düsseldorf, Germany
,
June 16–20
.
23.
Sattelmayer
,
T.
,
Polifke
,
W.
,
Winkler
,
D.
, and
Döbbeling
,
K.
,
1998
, “
NOx-Abatement Potential of Lean-Premixed GT Combustors
,”
ASME J. Eng. Gas Turbines Power
,
120
(
1
), pp.
48
59
. 10.1115/1.2818087
24.
Goh
,
E.
,
Sirignano
,
M.
,
Nair
,
V.
,
Emerson
,
B.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2017
, “
Modeling of Minimum NOx in Staged-Combustion Architectures at Elevated Temperatures
,”
Proceedings of ASME Turbo Expo
.
25.
Sirignano
,
M. D.
,
Nair
,
V.
,
Sunkara
,
D.
,
Emerson
,
B. L.
,
Seitzman
,
J.
, and
Lieuwen
,
T. C.
,
2019
, “
Impact of Flame Lifting on Nitrogen Oxide Emissions From Premixed Reacting Jets in a Vitiated Crossflow
,”
Proceedings of ASME Turbo Expo
,
Phoenix, AZ
,
June 17–21
.
26.
Wagner
,
J. A.
,
Grib
,
S. W.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2015
, “
Flowfield Measurements and Flame Stabilization of a Premixed Reacting Jet in Vitiated Crossflow
,”
Combust. Flame
,
162
(
10
), pp.
3711
3727
. 10.1016/j.combustflame.2015.07.010
27.
Wagner
,
J. A.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2017
, “
Premixed Jet Flame Behavior in a Hot Vitiated Crossflow of Lean Combustion Products
,”
Combust. Flame
,
176
, pp.
521
533
. 10.1016/j.combustflame.2016.11.014
28.
Wagner
,
J. A.
,
Grib
,
S. W.
,
Dayton
,
J. W.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2017
, “
Flame Stabilization Analysis of a Premixed Reacting Jet in Vitiated Crossflow
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3763
3771
. 10.1016/j.proci.2016.07.020
29.
Pinchak
,
M. D.
,
Shaw
,
V. G.
, and
Gutmark
,
E. J.
,
2018
, “
The Effects of Nozzle Geometry and Equivalence Ratio on a Premixed Reacting Jet in Vitiated Cross-Flow
,”
Combust. Flame
,
191
, pp.
353
367
. 10.1016/j.combustflame.2017.12.018
30.
Pinchak
,
M. D.
,
Shaw
,
V. G.
, and
Gutmark
,
E. J.
,
2019
, “
Flow-Field Dynamics of the Non-Reacting and Reacting Jet in a Vitiated Cross-Flow
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5163
5171
. 10.1016/j.proci.2018.07.019
31.
Stiehl
,
B.
,
Otero
,
M.
,
Genova
,
T.
,
Worbington
,
T.
,
Reyes
,
J.
,
Ahmed
,
K.
,
Martin
,
S.
, and
Velez
,
C.
,
2020
, “
Simulation of Premixed and Partially Premixed Jet-in-Crossflow Flames at High-Pressure
,”
ASME J. Eng. Gas Turbines Power
.
32.
Genova
,
T.
,
Otero
,
M.
, and
Ahmed
,
K. A.
,
2020
, “
Partial Premixing Effects on the Reacting Jet of a High Pressure Axially Staged Combustor
,”
ASME J. Eng. Gas Turbines Power
.
33.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man Cybern.
,
9
(
1
), pp.
62
66
. 10.1109/TSMC.1979.4310076
34.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner, Jr
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, “
GRI-MECH 3.0
,” www.combustion.berkeley.edu/gri-mech/
35.
Simcenter STAR-CCM+® Documentation User Guide Version 14.04, 2019
, ©
Siemens PLM Software
.
36.
Hewson
,
J.
, “
Skeletal Mechanisms for Methane-Air Flames Including NOx Chemistry
,” http://web.eng.ucsd.edu/mae/groups/combustion/Mechanisms/skeletal.html
37.
Tominagaa
,
Y.
, and
Stathopoulos
,
T.
,
2007
, “
Turbulent Schmidt Numbers for CFD Analysis With Various Types of Flowfield
,”
Atmos. Environ.
,
41
(
37
), pp.
8091
8099
. 10.1016/j.atmosenv.2007.06.054
38.
Karalus
,
M.
,
2019
, “
Best Practices for RANS Combustion
,”
ERCOFTAC presentation
.
39.
Loparo
,
Z.
,
2015
, “
Validation of CFD Models of a Second-Stage Combustion System Using STAR-CCM+
,”
UTSR Internship Report
,
University of Central Florida
.
40.
Karvinen
,
A.
, and
Ahlstedt
,
H.
,
2005
, “
Comparison of Turbulence Models in Case of Jet in Crossflow Using Commercial CFD Code
,”
Eng. Turbul. Model. Exp.
,
6
, pp.
399
408
. 10.1016/B978-008044544-1/50038-8
41.
Stiehl
,
B.
,
Worbington
,
T.
,
Miegel
,
A.
,
Martin
,
S.
,
Velez
,
C.
, and
Ahmed
,
K.
,
2019
, “
Combustion and Emission Characteristics of a Lean Axial-Stage Combustor
,”
Proceedings of ASME TurboExpo 2019
,
Phoenix, AZ
,
June 17–21
.
42.
Rodrigues
,
N. S.
,
Busari
,
O.
,
Senior
,
W. C. B.
,
McDonald
,
C. T.
,
North
,
A. J.
,
Chen
,
Y. T.
,
Laster
,
W. R.
,
Meyer
,
S. E.
, and
Lucht
,
R. P.
,
2019
, “
The Development and Performance of a Perforated Plate Burner to Produce Vitiated Flow With Negligible Swirl Under Engine-Relevant Gas Turbine Conditions
,”
Rev. Sci. Instrum.
,
90
(
7
), p.
075107
. 10.1063/1.5100180
43.
Rodrigues
,
N. S.
,
Busari
,
T.
,
Senior
,
W. C. B.
,
Chen
,
Y. T.
,
North
,
A. J.
,
Portillo
,
E.
,
Meyer
,
S. E.
, and
Lucht
,
R. P.
,
2018
, “
Development and Performance of a Perforated Plate Burner Under Gas Turbine Engine-Relevant Conditions
,”
AIAA Propulsion and Energy Forum
,
Cincinnati, OH
,
July 9–11
.
44.
Rodrigues
,
N. S.
,
Busari
,
O.
,
Senior
,
W. C. B.
,
McDonald
,
C. T.
,
Chen
,
Y. T.
,
North
,
A. J.
,
Lasterd
,
W. R.
,
Meyera
,
S. E.
, and
Luchta
,
R. P.
,
2020
, “
NOX Reduction in an Axially Staged Gas Turbine Model Combustor Through Increase in the Combustor Exit Mach Number
,”
Combust. Flame
,
212
, pp.
282
294
. 10.1016/j.combustflame.2019.10.039
45.
Genova
,
T.
,
Otero
,
M.
,
Stiehl
,
B.
,
Reyes
,
J.
,
Ahmed
,
K.
, and
Martin
,
S.
,
2019
, “
Exploration of a Reacting Jet-in-Crossflow in a High-Pressure Axial Stage Combustor
,”
AIAA Propulsion and Energy 2019 Forum
.
You do not currently have access to this content.