Abstract

Hydrogen combustion, coupled with the use of argon as a working fluid, is a promising approach to delivering clean and efficient energy from internal combustion (IC) engines. The use of hydrogen-oxygen-argon (H2/O2/Ar) mixtures in combustion aids in mitigating harmful environmental pollutants and enables a highly efficient energy conversion process. The use of argon as a working fluid decreases the NOx emissions and increases the thermal efficiency of internal combustion engines due to the high specific heat ratio of noble gases. In this study, premixed hydrogen combustion was investigated with the purpose of examining the effect of the full or partial substitution of argon for nitrogen in air on laminar burning velocity (LBV), flame speed, flame morphology, and instability. The experimental approach uses an optically accessible constant volume combustion chamber (CVCC) with central ignition; the spherical flame development was studied using a high-speed Z-type Schlieren visualization system. Moreover, a numerical model was developed to convert the experimental dynamic pressure rise data to laminar burning velocity. Coupling the model to a chemical equilibrium code aids in determining the burned gas properties. Additionally, an image processing technique has been suggested to compute the flame propagation speed. The experimental and numerical investigations indicate that increasing the concentration of argon as the working fluid in the mixture increases the laminar burning velocity and flame speed while extending the lean flammability limit.

References

1.
Annual Energy Outlook 2019 With Projections to 2050
,”
2019
, U.S. Energy Information Administration, Office of Energy Analysis, U.S. Department of Energy, https://www.eia.gov/outlooks/aeo/, Accessed January 2019.
2.
Energy, Transport and GHG Emissions Trends to 2050: Reference Scenario 2013
,”
European Commission
,
2013
, https://www.eea.europa.eu/data-and-maps/indicators/transport-final-energy-consumption-by-mode/energy-transport-and-ghg-emissions, Accessed 16 December 2013.
3.
Höök
,
M.
, and
Tang
,
X.
,
2013
, “
Depletion of Fossil Fuels and Anthropogenic Climate Change—A Review
,”
Energy Policy
,
52
, pp.
797
809
. 10.1016/j.enpol.2012.10.046
4.
Wuebbles
,
D. J.
, and
Jain
,
A. K.
,
2001
, “
Concerns About Climate Change and the Role of Fossil Fuel use
,”
Fuel Process. Technol.
,
71
(
1–3
), pp.
99
119
. 10.1016/S0378-3820(01)00139-4
5.
Bartsch
,
U.
,
Müller
,
B.
,
Aaheim
,
A.
,
Barnes
,
P.
,
Kolshus
,
H.
, and
Mabro
,
R.
,
2000
,
Fossil Fuels in a Changing Climate: Impacts of the Kyoto Protocol and Developing Country Participation
,
Oxford University Press
,
Oxford
.
6.
Ishinishi
,
N.
,
Koizumi
,
A.
,
McClellan
,
R. O.
, and
Stober
,
W.
,
1986
,
Carcinogenic and Mutagenic Effects of Diesel Engine Exhaust
,
Elsevier Science Pub. Co. Inc.
,
New York, NY
.
7.
McClellan
,
R. O.
,
Hesterberg
,
T. W.
, and
Wall
,
J. C.
,
2012
, “
Evaluation of Carcinogenic Hazard of Diesel Engine Exhaust Needs to Consider Revolutionary Changes in Diesel Technology
,”
Regul. Toxicol. Pharmacol.
,
63
(
2
), pp.
225
258
. 10.1016/j.yrtph.2012.04.005
8.
Kampa
,
M.
, and
Castanas
,
E.
,
2008
, “
Human Health Effects of Air Pollution
,”
Environ. Pollut.
,
151
(
2
), pp.
362
367
. 10.1016/j.envpol.2007.06.012
9.
Zabetakis
,
M. G.
,
1965
,
Flammability Characteristics of Combustible Gases and Vapors
,
Bureau of Mines
,
Washington, DC
.
10.
Gupta
,
R. B.
,
2008
,
Hydrogen Fuel: Production, Transport, and Storage
,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
.
11.
Furuhama
,
S.
,
Yamane
,
K.
, and
Yamaguchi
,
I.
,
1977
, “
Combustion Improvement in a Hydrogen Fueled Engine
,”
Int. J. Hydrogen Energy
,
2
(
3
), pp.
329
340
. 10.1016/0360-3199(77)90027-1
12.
Li
,
H.
, and
Karim
,
G. A.
,
2004
, “
Knock in Spark Ignition Hydrogen Engines
,”
Int. J. Hydrogen Energy
,
29
(
8
), pp.
859
865
. 10.1016/j.ijhydene.2003.09.013
13.
White
,
C.
,
Steeper
,
R.
, and
Lutz
,
A.
,
2006
, “
The Hydrogen-Fueled Internal Combustion Engine: A Technical Review
,”
Int. J. Hydrogen Energy
,
31
(
10
), pp.
1292
1305
. 10.1016/j.ijhydene.2005.12.001
14.
Holladay
,
J. D.
,
Hu
,
J.
,
King
,
D. L.
, and
Wang
,
Y.
,
2009
, “
An Overview of Hydrogen Production Technologies
,”
Catal. Today
,
139
(
4
), pp.
244
260
. 10.1016/j.cattod.2008.08.039
15.
Karim
,
G. A.
,
2003
, “
Hydrogen as a Spark Ignition Engine Fuel
,”
Int. J. Hydrogen Energy
,
28
(
5
), pp.
569
577
. 10.1016/S0360-3199(02)00150-7
16.
Ganesh
,
R. H.
,
Subramanian
,
V.
,
Balasubramanian
,
V.
,
Mallikarjuna
,
J.
,
Ramesh
,
A.
, and
Sharma
,
R.
,
2008
, “
Hydrogen Fueled Spark Ignition Engine With Electronically Controlled Manifold Injection: An Experimental Study
,”
Renewable Energy
,
33
(
6
), pp.
1324
1333
. 10.1016/j.renene.2007.07.003
17.
Ikegami
,
M.
,
Miwa
,
K.
, and
Shioji
,
M.
,
1982
, “
A Study of Hydrogen Fuelled Compression Ignition Engines
,”
Int. J. Hydrogen Energy
,
7
(
4
), pp.
341
353
. 10.1016/0360-3199(82)90127-6
18.
Antunes
,
J. G.
,
Mikalsen
,
R.
, and
Roskilly
,
A.
,
2009
, “
An Experimental Study of a Direct Injection Compression Ignition Hydrogen Engine
,”
Int. J. Hydrogen Energy
,
34
(
15
), pp.
6516
6522
. 10.1016/j.ijhydene.2009.05.142
19.
Antunes
,
J. G.
,
Mikalsen
,
R.
, and
Roskilly
,
A.
,
2008
, “
An Investigation of Hydrogen-Fuelled HCCI Engine Performance and Operation
,”
Int. J. Hydrogen Energy
,
33
(
20
), pp.
5823
5828
. 10.1016/j.ijhydene.2008.07.121
20.
Shudo
,
T.
, and
Yamada
,
H.
,
2007
, “
Hydrogen as an Ignition-Controlling Agent for HCCI Combustion Engine by Suppressing the Low-Temperature Oxidation
,”
Int. J. Hydrogen Energy
,
32
(
14
), pp.
3066
3072
. 10.1016/j.ijhydene.2006.12.002
21.
Liu
,
J.
,
Yang
,
F.
,
Wang
,
H.
, and
Ouyang
,
M.
,
2012
, “
Numerical Study of Hydrogen Addition to DME/CH4 Dual Fuel RCCI Engine
,”
Int. J. Hydrogen Energy
,
37
(
10
), pp.
8688
8697
. 10.1016/j.ijhydene.2012.02.055
22.
Rao
,
B. H.
,
Shrivastava
,
K.
, and
Bhakta
,
H.
,
1983
, “
Hydrogen for Dual Fuel Engine Operation
,”
Int. J. Hydrogen Energy
,
8
(
5
), pp.
381
384
.
23.
Tomita
,
E.
,
Kawahara
,
N.
,
Piao
,
Z.
,
Fujita
,
S.
, and
Hamamoto
,
Y.
,
2001
, “
Hydrogen Combustion and Exhaust Emissions Ignited With Diesel Oil in a Dual Fuel Engine
,”
SAE Technical Paper 0148-7191
.
24.
Shahsavan
,
M.
,
Morovatiyan
,
M.
, and
Mack
,
J. H.
,
2018
, “
A Numerical Investigation of Hydrogen Injection Into Noble Gas Working Fluids
,”
Int. J. Hydrogen Energy
,
43
(
29
), pp.
13575
13582
. 10.1016/j.ijhydene.2018.05.040
25.
Mansor
,
M. R. A.
, and
Shioji
,
M.
,
2016
, “
Investigation of the Combustion Process of Hydrogen Jets Under Argon-Circulated Hydrogen-Engine Conditions
,”
Combust. Flame
,
173
, pp.
245
257
. 10.1016/j.combustflame.2016.07.032
26.
Turns
,
S. R.
,
1996
,
An Introduction to Combustion
,
McGraw-Hill
,
New York
.
27.
Monteiro
,
E.
, and
Rouboa
,
A.
,
2011
, “
Measurements of the Laminar Burning Velocities for Typical Syngas–Air Mixtures at Elevated Pressures
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031002
. 10.1115/1.4004607
28.
Munajat
,
N. F.
,
Erlich
,
C.
,
Fakhrai
,
R.
, and
Fransson
,
T. H.
,
2012
, “
Influence of Water Vapour and Tar Compound on Laminar Flame Speed of Gasified Biomass Gas
,”
Appl. Energy
,
98
, pp.
114
121
. 10.1016/j.apenergy.2012.03.010
29.
Monteiro
,
E.
,
Rouboa
,
A.
,
Bellenoue
,
M.
,
Boust
,
B.
, and
Sotton
,
J.
,
2014
, “
Multi-Zone Modeling and Simulation of Syngas Combustion Under Laminar Conditions
,”
Appl. Energy
,
114
, pp.
724
734
. 10.1016/j.apenergy.2012.08.027
30.
Natarajan
,
J.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2007
, “
Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure
,”
Combust. Flame
,
151
(
1–2
), pp.
104
119
. 10.1016/j.combustflame.2007.05.003
31.
Askari
,
O.
,
Wang
,
Z.
,
Vien
,
K.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2017
, “
On the Flame Stability and Laminar Burning Speeds of Syngas/O2/He Premixed Flame
,”
Fuel
,
190
, pp.
90
103
. 10.1016/j.fuel.2016.11.042
32.
Yelishala
,
S. C.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Levendis
,
Y. A.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2019
, “
Effect of Carbon Dioxide on the Laminar Burning Speed of Propane–Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082205
. 10.1115/1.4042411
33.
Bai
,
Z.
,
Wang
,
Z.
,
Yu
,
G.
,
Yang
,
Y.
, and
Metghalchi
,
H.
,
2019
, “
Experimental Study of Laminar Burning Speed for Premixed Biomass/Air Flame
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022206
. 10.1115/1.4041412
34.
Roy
,
S.
,
Zare
,
S.
, and
Askari
,
O.
,
2019
, “
Understanding the Effect of Oxygenated Additives on Combustion Characteristics of Gasoline
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022205
. 10.1115/1.4041316
35.
Yu
,
G.
,
Askari
,
O.
,
Hadi
,
F.
,
Wang
,
Z.
,
Metghalchi
,
H.
,
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2017
, “
Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022202
.
36.
Yu
,
G.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2018
, “
Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012204
. 10.1115/1.4037376
37.
Iijima
,
T.
, and
Takeno
,
T.
,
1986
, “
Effects of Temperature and Pressure on Burning Velocity
,”
Combust. Flame
,
65
(
1
), pp.
35
43
. 10.1016/0010-2180(86)90070-2
38.
Milton
,
B.
, and
Keck
,
J.
,
1984
, “
Laminar Burning Velocities in Stoichiometric Hydrogen and Hydrogen-Hydrocarbon Gas Mixtures
,”
Combust. Flame
,
58
(
1
), pp.
13
22
. 10.1016/0010-2180(84)90074-9
39.
Sun
,
C.
,
Sung
,
C.
,
He
,
L.
, and
Law
,
C. K.
,
1999
, “
Dynamics of Weakly Stretched Flames: Quantitative Description and Extraction of Global Flame Parameters
,”
Combust. Flame
,
118
(
1–2
), pp.
108
128
. 10.1016/S0010-2180(98)00137-0
40.
Bradley
,
D.
,
Lawes
,
M.
,
Liu
,
K.
,
Verhelst
,
S.
, and
Woolley
,
R.
,
2007
, “
Laminar Burning Velocities of Lean Hydrogen–Air Mixtures at Pressures up to 1.0MPa
,”
Combust. Flame
,
149
(
1–2
), pp.
162
172
. 10.1016/j.combustflame.2006.12.002
41.
Ilbas
,
M.
,
Crayford
,
A.
,
Yılmaz
,
I.
,
Bowen
,
P.
, and
Syred
,
N.
,
2006
, “
Laminar-burning Velocities of Hydrogen–Air and Hydrogen–Methane–Air Mixtures: An Experimental Study
,”
Int. J. Hydrogen Energy
,
31
(
12
), pp.
1768
1779
. 10.1016/j.ijhydene.2005.12.007
42.
Liu
,
D.
, and
MacFarlane
,
R.
,
1983
, “
Laminar Burning Velocities of Hydrogen-Air and Hydrogen-Air Steam Flames
,”
Combust. Flame
,
49
(
1–3
), pp.
59
71
. 10.1016/0010-2180(83)90151-7
43.
Qin
,
X.
,
Kobayashi
,
H.
, and
Niioka
,
T.
,
2000
, “
Laminar Burning Velocity of Hydrogen–Air Premixed Flames at Elevated Pressure
,”
Exp. Thermal Fluid Sci.
,
21
(
1–3
), pp.
58
63
. 10.1016/S0894-1777(99)00054-0
44.
Pugh
,
D.
,
Crayford
,
A. P.
,
Bowen
,
P. J.
,
O’Doherty
,
T.
,
Marsh
,
R.
, and
Steer
,
J.
,
2014
, “
Laminar Flame Speed and Markstein Length Characterisation of Steelworks Gas Blends
,”
Appl. Energy
,
136
, pp.
1026
1034
. 10.1016/j.apenergy.2014.04.044
45.
Bao
,
X.
,
Jiang
,
Y.
,
Xu
,
H.
,
Wang
,
C.
,
Lattimore
,
T.
, and
Tang
,
L.
,
2017
, “
Laminar Flame Characteristics of Cyclopentanone at Elevated Temperatures
,”
Appl. Energy
,
195
, pp.
671
680
. 10.1016/j.apenergy.2017.03.031
46.
Hayashi
,
S.
, and
Kumagai
,
S.
,
1975
, “
Flame Propagation in Fuel Droplet-Vapor-Air
,”
Symposium (International) on Combustion
,
Tokyo, Japan
,
Aug. 25–31
, pp.
445
452
.
47.
Fogla
,
N.
,
Creta
,
F.
, and
Matalon
,
M.
,
2015
, “
Effect of Folds and Pockets on the Topology and Propagation of Premixed Turbulent Flames
,”
Combust. Flame
,
162
(
7
), pp.
2758
2777
. 10.1016/j.combustflame.2015.04.012
48.
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2010
, “
On Flame Kernel Formation and Propagation in Premixed Gases
,”
Combust. Flame
,
157
(
12
), pp.
2211
2221
. 10.1016/j.combustflame.2010.07.016
49.
Lide
,
D. R.
,
2005
,
CDC Handbook of Chemistry and Physics
,
CRC Press
,
Boca Raton, FL
.
50.
Horman
,
M. H.
,
1965
, “
An Application of Wavefront Reconstruction to Interferometry
,”
Appl. Opt.
,
4
(
3
), pp.
333
336
. 10.1364/AO.4.000333
51.
Chen
,
Z.
,
Burke
,
M. P.
, and
Ju
,
Y.
,
2009
, “
Effects of Compression and Stretch on the Determination of Laminar Flame Speeds Using Propagating Spherical Flames
,”
Combust. Theory Modell.
,
13
(
2
), pp.
343
364
. 10.1080/13647830802632192
52.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature
,”
Combust. Flame
,
48
, pp.
191
210
. 10.1016/0010-2180(82)90127-4
53.
Metghalchi
,
M.
,
1980
,
Laminar Burning Velocity of Mixtures of Air With Indolene, Isooctane, Methanol and Propane
, Doctoral Dissertation,
Massachusetts Institute of Technology
,
Cam,bridge, MA
.
54.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moffat
,
H. K.
, and
Weber
,
B. W.
,
2018
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” https://www.cantera.org, Version 2.4.0.
55.
Chase
,
M. W.
, Jr.
,
1998
,
NIST-JANAF Thermochemical Tables
,
American Chemical Society; American Institute of Physics for the National Institute of Standards and Technology
,
Washington, DC; New York
.
56.
Liao
,
S.
,
Jiang
,
D.
,
Huang
,
Z.
,
Shen
,
W.
,
Yuan
,
C.
, and
Cheng
,
Q.
,
2007
, “
Laminar Burning Velocities for Mixtures of Methanol and Air at Elevated Temperatures
,”
Energy Convers. Manage.
,
48
(
3
), pp.
857
863
. 10.1016/j.enconman.2006.08.017
57.
Gu
,
X.
,
Li
,
Q.
,
Huang
,
Z.
, and
Zhang
,
N.
,
2011
, “
Measurement of Laminar Flame Speeds and Flame Stability Analysis of Tert-Butanol–Air Mixtures at Elevated Pressures
,”
Energy Convers. Manage.
,
52
(
10
), pp.
3137
3146
. 10.1016/j.enconman.2011.05.002
58.
Law
,
C. K.
,
2010
,
Combustion Physics
,
Cambridge University Press
,
Cambridge
.
59.
Catoire
,
L.
, and
Naudet
,
V.
,
2005
, “
Estimation of Temperature-Dependent Lower Flammability Limit of Pure Organic Compounds in Air at Atmospheric Pressure
,”
Process Saf. Progress
,
24
(
2
), pp.
130
137
. 10.1002/prs.10072
60.
Kuznetsov
,
M.
,
Kobelt
,
S.
,
Grune
,
J.
, and
Jordan
,
T.
,
2012
, “
Flammability Limits and Laminar Flame Speed of Hydrogen–Air Mixtures at Sub-Atmospheric Pressures
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
17580
17588
. 10.1016/j.ijhydene.2012.05.049
61.
Vanderstraeten
,
B.
,
Tuerlinckx
,
D.
,
Berghmans
,
J.
,
Vliegen
,
S.
,
Van't Oost
,
E.
, and
Smit
,
B.
,
1997
, “
Experimental Study of the Pressure and Temperature Dependence on the Upper Flammability Limit of Methane/Air Mixtures
,”
J. Hazard. Mater.
,
56
(
3
), pp.
237
246
. 10.1016/S0304-3894(97)00045-9
62.
Williams
,
F. A.
,
1985
,
Combustion Theory
,
The Benjamin/Cummings Publishing Company, Inc.
,
Menlo Park, CA
.
63.
Landau
,
L.
,
1944
, “
Slow Combustion Theory
,”
Zh. Eksp. Teor. Fiz
,
14
(
6
), pp.
240
244
.
64.
Matalon
,
M.
,
1992
, “Hydrodynamic Instabilities in Flames,”
Major Research Topics in Combustion
,
Springer
,
New York
, pp.
179
196
.
65.
Rhodes
,
D. B.
, and
Keck
,
J. C.
,
1985
, “
Laminar Burning Speed Measurements of Indolene-Air-Diluent Mixtures at High Pressures and Temperatures
,”
SAE Trans.
,
94
, pp.
23
35
.
66.
Sun
,
L.
, and
Venart
,
J.
,
2005
, “
Thermal Conductivity, Thermal Diffusivity, and Heat Capacity of Gaseous Argon and Nitrogen
,”
Int. J. Thermophys.
,
26
(
2
), pp.
325
372
. 10.1007/s10765-005-4502-0
67.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2018
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
John Wiley & Sons
,
New York
.
68.
Crowl
,
D. A.
, and
Louvar
,
J. F.
,
2001
,
Chemical Process Safety: Fundamentals With Applications
,
Pearson Education
,
Australia
.
69.
Askari
,
O.
,
Vien
,
K.
,
Wang
,
Z.
,
Sirio
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/Air Flames at High Pressures and Temperatures
,”
Appl. Energy
,
179
, pp.
451
462
. 10.1016/j.apenergy.2016.06.118
70.
Zare
,
S.
,
Roy
,
S.
,
El Maadi
,
A.
, and
Askari
,
O.
,
2019
, “
An Investigation on Laminar Burning Speed and Flame Structure of Anisole-Air Mixture
,”
Fuel
,
244
, pp.
120
131
. 10.1016/j.fuel.2019.01.149
71.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2017
, “
Cell Formation Effects on the Burning Speeds and Flame Front Area of Synthetic Gas at High Pressures and Temperatures
,”
Appl. Energy
,
189
, pp.
568
577
. 10.1016/j.apenergy.2016.12.090
72.
Moghaddas
,
A.
,
Bennett
,
C.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Measurement of Laminar Burning Speeds and Determination of Onset of Auto-Ignition of Jet-A/Air and Jet Propellant-8/Air Mixtures in a Constant Volume Spherical Chamber
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022205
. 10.1115/1.4006480
You do not currently have access to this content.