Abstract

To explore the feasibility of converting hot flue gas into valuable syngas through char gasification process, Aspen Plus is applied to evaluate the performance of the integrated system including oxy-combustion, pyrolysis, gasification, and flue gas recirculation. The impact of feedstock type (reed straw and municipal solid waste (MSW)), feeding rate (0.1–1 t/h), and flue gas recycle ratio (FGR) (10%–30%) is investigated. The economic analysis of the integrated system is also performed. The results indicate that higher oxygen consumption is required for biomass gasification to reach the same temperature as MSW gasification. The gasification temperature is 750 °C–950 °C under 10%–30% FGR. The CO + H2 content in syngas from biomass gasification is slightly higher than that from MSW gasification. For the integrated system, more natural gas (NG) can be saved and more fossil CO2 can be reduced under biomass gasification. When the feedstock input is 1 t/h, the fossil CO2 emission can be reduced by 70% when taking biomass, the CO2 reduction is double of that when taking MSW. The total OPEX cost can be 26% saved by biomass and 62% saved by MSW due to the government subsidy. If CO2 tax is considered, the advantage of biomass for saving OPEX cost will be more obvious.

References

1.
Ahmed
,
I. I.
, and
Gupta
,
A. K.
,
2011
, “
Kinetics of Woodchips Char Gasification With Steam and Carbon Dioxide
,”
Appl. Energy
,
88
(
5
), pp.
1613
1619
. 10.1016/j.apenergy.2010.11.007
2.
Hla
,
S. S.
,
Lopes
,
R.
, and
Berts
,
D.
,
2016
, “
The CO2 Gasification Reactivity of Chars Produced From Australian Municipal Solid Waste
,”
Fuel
,
185
, pp.
847
854
. 10.1016/j.fuel.2016.08.039
3.
Gupta
,
A.
,
Thengane
,
S. K.
, and
Mahajani
,
S.
,
2018
, “
CO2 Gasification of Char From Lignocellulosic Garden Waste: Experimental and Kinetic Study
,”
Bioresour. Technol.
,
263
, pp.
180
191
. 10.1016/j.biortech.2018.04.097
4.
Mafu
,
L. D.
,
Neomagus
,
H. W. J. P.
,
Everson
,
R. C.
,
Okolo
,
G. N.
,
Strydom
,
C. A.
, and
Bunt
,
J. R.
,
2018
, “
The Carbon Dioxide Gasification Characteristics of Biomass Char Samples and Their Effect on Coal Gasification Reactivity During co-Gasification
,”
Bioresour. Technol.
,
258
, pp.
70
78
. 10.1016/j.biortech.2017.12.053
5.
Le
,
C. D.
, and
Kolaczkowski
,
S. T.
,
2015
, “
Steam Gasification of a Refuse Derived Char: Reactivity and Kinetics
,”
Chem. Eng. Res. Des.
,
102
, pp.
389
398
. 10.1016/j.cherd.2015.07.004
6.
Waheed
,
Q. M. K.
,
Wu
,
C.
, and
Williams
,
P. T.
,
2016
, “
Hydrogen Production From High Temperature Steam Catalytic Gasification of Bio-Char
,”
J. Energy Inst.
,
89
(
2
), pp.
222
230
. 10.1016/j.joei.2015.02.001
7.
Slezak
,
R.
,
Krzystek
,
L.
, and
Ledakpwicz
,
S.
,
2019
, “
Steam Gasification of Pyrolysis Char From Spent Mushroom Substrate
,”
Biomass Bioenergy
,
122
, pp.
336
342
. 10.1016/j.biombioe.2019.02.007
8.
Nikoo
,
M. B.
, and
Mahinpey
,
N.
,
2008
, “
Simulation of Biomass Gasification in Fluidized Bed Reactor Using ASPEN PLUS
,”
Biomass Bioenergy
,
32
, pp.
1245
1254
. 10.1016/j.biombioe.2008.02.020
9.
Kuo
,
P. C.
,
Wu
,
W.
, and
Chen
,
W. H.
,
2014
, “
Gasification Performances of Raw and Torrefied Biomass in a Downdraft Fixed Bed Gasifier Using Thermodynamic Analysis
,”
Fuel
,
117
, pp.
1231
1241
. 10.1016/j.fuel.2013.07.125
10.
Deng
,
N.
,
Li
,
D.
,
Zhang
,
Q.
,
Zhang
,
A.
,
Cai
,
R.
, and
Zhang
,
B.
,
2019
, “
Simulation Analysis of Municipal Solid Waste Pyrolysis and Gasification Based on Aspen Plus
,”
Front. Energy
,
13
(
1
), pp.
64
70
. 10.1007/s11708-017-0481-7
11.
Begum
,
S.
,
Rasul
,
M. G.
, and
Akbar
,
D.
,
2014
, “
A Numerical Investigation of Municipal Solid Waste Gasification Using Aspen Plus
,”
Procedia Eng.
,
90
, pp.
710
717
. 10.1016/j.proeng.2014.11.800
12.
Kjuriati
,
A.
,
Purwanto
,
P.
,
Huboyo
,
H. S.
,
Suryono
,
S.
, and
Bawono Putro
,
A.
,
2018
, “
Application of Aspen Plus for Municipal Solid Waste Plasma Gasification Simulation: Case Study of Jatibarang Landfill in Semarang Indonesia
,”
J. Phys.: Conf. Ser.
,
1025
, p.
012006
. 10.1088/1742-6596/1025/1/012006
13.
Jarungthammachote
,
S.
, and
Dutta
,
A.
,
2008
, “
Equilibrium Modeling of Gasification: Gibbs Free Energy Minimization Approach and Its Application to Spouted Bed and Spout-Fluid Bed Gasifiers
,”
Energy Convers. Manage.
,
49
(
6
), pp.
1345
1356
. 10.1016/j.enconman.2008.01.006
14.
Mei
,
Z. F.
,
Chen
,
M.
, and
Chen
,
D. Z.
,
2019
, “
Product Oriented Catalyst Choice During MSW Pyrolysis and Volatile Reforming Process
,”
CIESC J.
,
70
(
8
), pp.
3104
3112
.
15.
Zhao
,
L.
,
Chen
,
D. Z.
, and
Liu
,
G. Y.
,
2010
, “
Two Calculation Methods for Greenhouse Gas Emissions From MSW Thermochemical Conversion and Utilization Process
,”
Acta Sci. Circumstantiae
,
20
(
8
), pp.
1634
1641
.
16.
Liang
,
C.
,
2019
,
Waste Classification Promotes the Development of Solid Waste Industry[R]
,
China Development Bank Securities
,
Beijing
.
17.
Fu
,
Z.
,
Zhang
,
S. H.
,
Li
,
X. P.
,
2015
, “
MSW Oxy-Enriched Incineration Technology Applied in China: Combustion Temperature, Flue Gas Loss and Economic Considerations
,”
Waste Manage.
,
38
, pp.
149
156
. 10.1016/j.wasman.2014.12.026
You do not currently have access to this content.