Abstract

In the present work, a central fuel property hypothesis (CFPH), which states that fuel properties are sufficient to provide an indication of a fuel’s performance irrespective of its chemical composition, was numerically investigated. In particular, the objective of the study was to determine whether Research Octane Number (RON) and Motor Octane Number (MON), as fuel properties, are sufficient to describe a fuel’s knock-limited performance under boosted spark-ignition (SI) conditions within the framework of CFPH. To this end, four TPRF-bioblendstock surrogates having different compositions but matched RON (=98) and MON (=90), were first generated using a non-linear regression model based on artificial neural network (ANN). Three unconventional bioblendstocks were included in the analysis: di-isobutylene (DIB), isobutanol, and Anisole. Skeletal reaction mechanisms were generated for the TPRF-DIB, TPRF-isobutanol, and TPRF-anisole blends from a detailed kinetic mechanism. Thereafter, numerical simulations were performed for the fuel surrogates using the skeletal mechanisms and a virtual cooperative fuel research (CFR) engine model, under a representative boosted operating condition. In the computational fluid dynamics (CFD) model, the G-equation approach was employed to track the turbulent flame front and the well-stirred reactor model combined with the multi-zone binning strategy was used to capture auto-ignition in the end-gas. In addition, laminar flame speed (LFS) was tabulated for each blend as a function of pressure, temperature, and equivalence ratio a priori, and the lookup tables were used to prescribe laminar flame speed as an input to the G-equation model. Parametric spark timing sweeps were performed for each fuel blend to determine the corresponding knock-limited spark advance (KLSA) and 50% burn point (CA50) at the respective KLSA timing. It was observed that despite same RON, MON, and engine operating conditions, the TPRF-anisole blend exhibited markedly different knock-limited performance from the other three blends. This deviation from the octane index (OI) expectation was shown to be caused by differences in laminar flame speed. However, it was found that relatively large fuel-specific differences in LFS (>20%) would have to be present to cause any appreciable deviation from the OI framework. Otherwise, RON and MON would still be robust enough to predict a fuel’s knock-limited performance.

References

1.
Kalghatgi
,
G. T.
,
2015
, “
Developments in Internal Combustion Engines and Implications for Combustion Science and Future Transport Fuels
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
101
115
. 10.1016/j.proci.2014.10.002
2.
Kalghatgi
,
G.
,
Levinsky
,
H.
, and
Colket
,
M.
,
2018
, “
Future Transportation Fuels
,”
Prog. Energy Combust. Sci.
,
69
, pp.
103
105
. 10.1016/j.pecs.2018.06.003
3.
Kalghatgi
,
G. T.
,
2017
, “
Knock Onset, Knock Intensity, Superknock and Preignition in Spark Ignition Engines
,”
Int. J. Eng. Res.
,
19
(
1
), pp.
7
20
. 10.1177/1468087417736430
4.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
5.
Im
,
H. G.
,
Pal
,
P.
,
Wooldridge
,
M. S.
, and
Mansfield
,
A. B.
,
2015
, “
A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures With Turbulent Velocity and Temperature Fluctuations
,”
Combust. Sci. Technol.
,
187
(
8
), pp.
1263
1275
. 10.1080/00102202.2015.1034355
6.
Pal
,
P.
,
Valorani
,
M.
,
Arias
,
P. G.
,
Im
,
H. G.
,
Wooldridge
,
M. S.
,
Ciottoli
,
P. P.
, and
Galassi
,
R. M.
,
2017
, “
Computational Characterization of Ignition Regimes in a Syngas/Air Mixture With Temperature Fluctuations
,”
Proc. Combust. Inst
,
36
(
3
), pp.
3705
3716
. 10.1016/j.proci.2016.07.059
7.
Pal
,
P.
,
Mansfield
,
A. B.
,
Arias
,
P. G.
,
Wooldridge
,
M. S.
, and
Im
,
H. G.
,
2015
, “
A Computational Study of Syngas Auto-Ignition Characteristics at High-Pressure and Low-Temperature Conditions With Thermal Inhomogeneities
,”
Combust. Theory Model.
,
19
(
5
), pp.
587
601
. 10.1080/13647830.2015.1068373
8.
Pal
,
P.
,
Mansfield
,
A. B.
,
Wooldridge
,
M. S.
, and
Im
,
H. G.
,
2015
, “
Characteristics of Syngas Auto-Ignition at High Pressure and Low Temperature Conditions With Thermal Inhomogeneities
,”
Energy Procedia
,
66
, pp.
1
4
. 10.1016/j.egypro.2015.02.003
9.
Pal
,
P.
,
Valorani
,
M.
,
Im
,
H. G.
, and
Wooldridge
,
M. S.
,
2015
, “
Prediction of Strong and Weak Ignition Regimes in Turbulent Reacting Flows With Temperature Fluctuations: A Direct Numerical Study
,”
68th Annual Meeting of APS Division of Fluid Dynamics
,
Boston, MA
,
Nov. 22–24
, Vol.
60
(
21
).
10.
Pal
,
P.
,
Im
,
H. G.
,
Wooldridge
,
M. S.
, and
Mansfield
,
A. B.
,
2015
, “
Effects of Turbulence and Temperature Fluctuations on Syngas Auto-Ignition
,”
7th European Combustion Meeting
, ISBN 978-963-12-1257-0.
11.
Pal
,
P.
,
Im
,
H. G.
,
Wooldridge
,
M. S.
, and
Mansfield
,
A. B.
,
2015
, “
Auto-Ignition Phenomena in Thermally Inhomogeneous Turbulent Reacting Flows; Numerical Validation of a Regime Diagram
,”
10th Asia-Pacific Conference on Combustion
,
Beijing, China
,
July 19–22
, pp.
1
6
.
12.
Kalghatgi
,
G. T.
,
2013
,
Fuel/Engine Interactions
,
SAE International
,
Warrendale, PA
.
13.
Lovell
,
W. G.
,
1948
, “
Knocking Characteristics of Hydrocarbons
,”
Ind. Eng. Chem.
,
40
(
12
), pp.
2388
2438
. 10.1021/ie50468a033
14.
ASTM D2699-12
,
2012
,
Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel
,
ASTM International
,
West Conshohocken, PA
.
15.
ASTM D2700-16
,
2016
,
Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel
,
ASTM International
,
West Conshohocken, PA
.
16.
Mehl
,
M.
,
Faravelli
,
T.
,
Giavazzi
,
F.
,
Ranzi
,
E.
,
Scorletti
,
P.
,
Tardani
,
A.
, and
Tarna
,
D.
,
2006
, “
Detailed Chemistry Promotes Understanding of Octane Numbers and Gasoline Sensitivity
,”
Energy Fuels
,
20
(
6
), pp.
2391
2398
. 10.1021/ef060339s
17.
Yates
,
A. D. B.
,
Swarts
,
A.
, and
Vilijoen
,
C. L.
,
2005
, “
Correlating Auto-Ignition Delays and Knock-Limited Spark-Advance Data for Different Types of Fuel
,” SAE Paper No. 2005-01-2083.
18.
Leppart
,
W.
,
1990
, “
The Chemical Origin of Fuel Octane sensitivity
,” SAE Paper No. 902137.
19.
Westbook
,
C. K.
,
Mehl
,
M.
,
Pitz
,
W. J.
, and
Sjoberg
,
M.
,
2017
, “
Chemical Kinetics of Octane Sensitivity in a Spark-Ignition Engine
,”
Combust. Flame
,
175
, pp.
2
15
. 10.1016/j.combustflame.2016.05.022
20.
Pahnke
,
A. J.
,
Cohen
,
P. M.
, and
Sturgis
,
B. M.
,
1954
, “
Preflame Oxidation of Hydrocarbons in a Motored Engine
,”
Ind. Eng. Chem.
,
46
(
5
), pp.
1024
1029
. 10.1021/ie50533a058
21.
Sturgis
,
B. M.
,
1955
, “
Some Concepts of Knock and Antiknock Action
,” SAE Paper No. 550249.
22.
Foong
,
T. M.
,
Morganti
,
K. J.
,
Brear
,
M. J.
,
Silva
,
G.
,
Yang
,
Y.
, and
Dryer
,
F.
,
2014
, “
The Octane Numbers of Ethanol Blended with Gasoline and Its Surrogates
,”
Fuel
,
115
, pp.
727
739
. 10.1016/j.fuel.2013.07.105
23.
Foong
,
T. M.
,
Brear
,
M. J.
,
Morganti
,
K. J.
,
Silva
,
G.
,
Yang
,
Y.
, and
Dryer
,
F.
,
2017
, “
Modeling End-Gas Autoignition of Ethanol/Gasoline Surrogate Blends in the Cooperative Fuel Research Engine
,”
Energy Fuels
,
31
(
3
), pp.
2378
2389
. 10.1021/acs.energyfuels.6b02380
24.
Kalaskar
,
V.
,
Kang
,
D.
, and
Boehman
,
A. L.
,
2017
, “
Impact of Fuel Composition and Intake Pressure on Lean Autoignition of Surrogate Gasoline Fuels in a CFR Engine
,”
Energy Fuels
,
31
(
10
), pp.
11315
11327
. 10.1021/acs.energyfuels.7b01157
25.
Hoth
,
A.
,
Kolodziej
,
C. K.
,
Rockstroh
,
T.
, and
Wallner
,
T.
,
2018
, “
Combustion Characteristics of PRF and TSF Ethanol Blends With RON 98 in an Instrumented CFR Engine
,” SAE Paper No. 2018-01-1672.
26.
Kalghatgi
,
G. T.
,
2005
, “
Auto-Ignition Quality of Practical Fuels and Implications for Fuel Requirements of Future SI and HCCI Engines
,” SAE Paper No. 2005-01-0239.
27.
Kalghatgi
,
G. T.
,
2001
, “
Fuel Anti-Knock Quality—Part I, Engine Studies
,” SAE Paper No. 2001-01-3584.
28.
Kalghatgi
,
G. T.
,
2001
, “
Fuel Anti-Knock Quality—Part I, Vehicle Studies—How Relevant is Motor Octane Number (MON) for Modern Engines?
,” SAE Paper No. 2001-01-3585.
29.
Zhang
,
B.
, and
Sarathy
,
S. M.
,
2016
, “
Lifecycle Optimized Ethanol-Gasoline Blends for Turbocharged Engines
,”
Appl. Energy
,
181
, pp.
38
53
. 10.1016/j.apenergy.2016.08.052
30.
Boot
,
M. D.
,
Tian
,
M.
,
Hensen
,
E. J. M.
, and
Sarathy
,
S. M.
,
2017
, “
Impact of Fuel Molecular Structure on Auto-Ignition Behavior—Design Rules for Future High Performance Gasolines
,”
Prog. Energy Combust. Sci.
,
60
, pp.
1
25
. 10.1016/j.pecs.2016.12.001
31.
Szybist
,
S.
, and
Splitter
,
D.
,
2018
, “
Understanding Chemistry-Specific Fuel Differences at a Constant RON in a Boosted SI Engine
,”
Fuel
,
217
, pp.
370
381
. 10.1016/j.fuel.2017.12.100
32.
Chen
,
C.
,
Pal
,
P.
,
Ameen
,
M.
,
Feng
,
D.
, and
Wei
,
H.
,
2020
, “
Large Eddy Simulation Study on Cycle-to-Cycle Variation of Knocking Combustion in a Spark Ignition Engine
,”
Appl. Energy
,
261
, p.
114447
. 10.1016/j.apenergy.2019.114447
33.
Mehl
,
M.
,
Zhang
,
Z.
,
Wagnon
,
S.
,
Kukkadapu
,
G.
,
Westbrook
,
C. K.
,
Pitz
,
W.
,
Zhang
,
Y.
,
Curran
,
H.
,
Rachidi
,
M. A.
,
Atef
,
N.
, and
Sarathy
,
M. S.
,
2017
, “
A Comprehensive Detailed Kinetic Mechanism for the Simulation of Transportation Fuels
,”
10th US National. Combustion Meeting
,
College Park, MD
,
Apr. 23–26
, pp.
1
6
.
34.
Ahmed
,
A.
,
Goteng
,
G.
,
Shankar
,
V. S. B.
,
Al-Qurashi
,
K.
,
Roberts
,
W. L.
, and
Sarathy
,
S. M.
,
2015
, “
A Computational Methodology for Formulating Gasoline Surrogate Fuels With Accurate Physical and Chemical Kinetic Properties
,”
Fuel
,
143
, pp.
290
300
. 10.1016/j.fuel.2014.11.022
35.
Mehl
,
M.
,
Chen
,
J.-Y.
,
Pitz
,
W.
,
Sarathy
,
S. M.
, and
Westbrook
,
C. K.
,
2011
, “
An Approach for Formulating Surrogates for Gasoline With Application Toward a Reduced Surrogate Mechanism for CFD Engine Modeling
,”
Energy Fuels
,
25
(
11
), pp.
5215
5233
. 10.1021/ef201099y
36.
Singh
,
E.
,
Badra
,
J.
,
Mehl
,
M.
,
Sarathy
,
S. M.
, and
Westbrook
,
C. K.
,
2017
, “
Chemical Kinetic Insights Into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures
,”
Energy Fuels
,
31
(
2
), pp.
1945
1960
. 10.1021/acs.energyfuels.6b02659
37.
Naser
,
N.
,
Yang
,
S. Y.
,
Kalghatgi
,
G.
, and
Chung
,
S. H.
,
2017
, “
Relating the Octane Numbers of Fuels to Ignition Delay Times Measured in an Ignition Quality Tester (IQT)
,”
Fuel
,
187
, pp.
117
127
.
38.
Naser
,
N.
,
Sarathy
,
S. M.
, and
Chung
,
S. H.
,
2018
, “
Estimating Fuel Octane Numbers From Homogeneous Gas-Phase Ignition Delay Times
,”
Combust. Flame
,
188
, pp.
307
323
.
39.
Badra
,
J. A.
,
Bokhumseen
,
N.
,
Mulla
,
N.
,
Sarathy
,
S. M.
,
Farooq
,
A.
,
Kalghatgi
,
G.
, and
Gaillard
,
P.
,
2015
, “
A Methodology to Relate Octane Numbers of Binary and Ternary n-Heptane, Iso-Octane and Toluene Mixtures With Simulated Ignition Delay Times
,”
Fuel
,
160
, pp.
458
469
. 10.1016/j.fuel.2015.08.007
40.
Whitesides
,
R.
, and
McNenly
,
M.
,
2018
, “
Prediction of RON and MON of Gasoline Surrogates by Neural Network Regression of Ignition Delay Times and Fuel Properties
,”
Advanced Engine Combustion Review Meeting
,
Argonne National Laboratory, IL
.
41.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc Combust Inst.
,
30
(
1
), pp.
1333
1341
. 10.1016/j.proci.2004.08.145
42.
Zheng
,
X. L.
,
Lu
,
T.
, and
Law
,
C. K.
,
2007
, “
Experimental Counterflow Ignition Temperatures and Reaction Mechanisms of 1,3-Butadiene
,”
Proc. Combust Inst.
,
31
(
1
), pp.
367
375
. 10.1016/j.proci.2006.07.182
43.
Lapointe
,
S.
,
Whitesides
,
R.
, and
McNenly
,
M.
,
2019
, “
Sparse, Iterative Simulation Methods for One-Dimensional Laminar Flames
,”
Combust. Flame
,
204
, pp.
23
32
. 10.1016/j.combustflame.2019.02.030
44.
Pal
,
P.
,
Kolodziej
,
C.
,
Choi
,
S.
,
Som
,
S.
,
Broatch
,
A.
,
Soriano
,
J.
,
Wu
,
Y.
,
Lu
,
T.
, and
See
,
Y. C.
, “
Development of a Virtual CFR Engine Model for Knocking Combustion Analysis
,”
SAE Int. J. Engines
,
11
(
6
), pp.
1069
1082
. 10.4271/2018-01-0187
45.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102205
. 10.1115/1.4040063
46.
Kolodziej
,
C.
,
Rockstroh
,
T.
,
Hoth
,
A.
,
Som
,
S.
,
Pal
,
P.
,
Grout
,
R.
, and
Mueller
,
J.
,
2018
, “
Boosted SI and Multimode SI/ACI Combustion
,”
U.S. Department of Energy Annual Merit Review Meeting
,
Washington, DC
.
47.
Choi
,
S.
,
Kolodziej
,
C.
,
Wallner
,
T.
, and
Hoth
,
A.
,
2018
, “
Development and Validation of a Three Pressure Analysis (TPA) GT-Power Model of the CFR F1/F2 Engine for Estimating Cylinder Conditions
,” SAE Technical Paper 2018-01-0848.
48.
Vuilleumier
,
D.
, and
Sjoberg
,
M.
,
2017
, “
Significance of RON, MON, and LTHR for Knock Limits of Compositionally Dissimilar Gasoline Fuels in a DISI Engine
,”
SAE Int. J. Engines
,
10
(
3
), pp.
938
950
. 10.4271/2017-01-0662
49.
CONVERGE 2.3
,
2016
,
Theory Manual
,
Convergent Science Inc.
,
Middleton, WI
.
50.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG k-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
. 10.1080/00102209508907782
51.
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable Density Turbulence Flow With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
613
625
. 10.1016/0017-9310(96)00117-2
52.
Issa
,
R. I.
,
1981
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
65
(
1
), pp.
40
65
.
53.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
54.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Mixtures of Air and Methanol, Isooctane and Indolene at High Pressures and Temperatures
,”
Combust. Flame
,
48
, pp.
191
210
. 10.1016/0010-2180(82)90127-4
55.
Gulder
,
O. L.
,
1984
, “
Correlations of Laminar Combustion Data for Alternative S.I. Engine Fuels
,” SAE Paper No. 841000.
56.
Scarcelli
,
R.
,
Richards
,
K.
,
Pomraning
,
E.
,
Senecal
,
P. K.
,
Wallner
,
T.
, and
Sevik
,
J.
,
2016
, “
Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations
,” SAE Paper No. 2016-01-0593.
57.
Senecal
,
P.
,
Pomraning
,
E.
,
Richards
,
K.
,
Briggs
,
T.
,
Choi
,
C. Y.
,
McDavid
,
R. M.
, and
Patterson
,
M. A.
,
2003
, “
Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-off Length Using CFD and Parallel Detailed Chemistry
,” SAE Paper No. 2003-01-1043.
58.
Babajimopoulos
,
A.
,
Assanis
,
D. N.
,
Flowers
,
D. L.
,
Aceves
,
S. M.
, and
Hessel
,
R. P.
,
2005
, “
A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model With Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
6
(
5
), pp.
497
512
. 10.1243/146808705X30503
59.
Pal
,
P.
,
Keum
,
S.
, and
Im
,
H. G.
,
2016
, “
Assessment of Flamelet Versus Multi-Zone Combustion Modeling Approaches for Stratified-Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
17
(
3
), pp.
280
290
. 10.1177/1468087415571006
60.
Pal
,
P.
,
2016
, “
Computational Modeling and Analysis of Low Temperature Combustion Regimes for Advanced Engine Applications
,”
Ph.D. Dissertation
,
University of Michigan-Ann Arbor
.
61.
Keum
,
S.
,
Pal
,
P.
,
Im
,
H. G.
,
Babajimopoulos
,
A.
, and
Assanis
,
D. N.
,
2016
, “
Effects of Fuel Injection Parameters on the Performance of Homogeneous Charge Compression Ignition at Low-Load Conditions
,”
Int. J. Engine Res.
,
17
(
4
), pp.
413
420
. 10.1177/1468087415583597
62.
Pal
,
P.
,
Probst
,
D.
,
Pei
,
Y.
,
Zhang
,
Y.
,
Traver
,
M.
,
Cleary
,
D.
, and
Som
,
S.
,
2017
, “
Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis
,”
SAE Int. J. Fuels Lubr.
,
10
(
1
), pp.
56
68
. 10.4271/2017-01-0578
63.
Pei
,
Y.
,
Pal
,
P.
,
Zhang
,
Y.
,
Traver
,
M.
,
Cleary
,
D.
,
Futterer
,
C.
,
Brenner
,
M.
,
Probst
,
D.
, and
Som
,
S.
,
2019
, “
CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer
,”
SAE Int. J. Adv. Curr. Prac. Mobility
,
1
(
1
), pp.
166
179
.
64.
Pomraning
,
E.
,
Richards
,
K.
, and
Senecal
,
P.
,
2014
, “
Modeling Turbulent Combustion Using a RANS Model, Detailed Chemistry, and Adaptive Mesh Refinement
,” SAE Paper No. 2014-01-1116, 2014.
65.
Kalghatgi
,
G.
,
Algunaibet
,
I.
, and
Morganti
,
K.
,
2017
, “
On Knock Intensity and Superknock in SI Engines
,”
SAE Int. J. Engines
,
10
(
3
), pp.
1051
1063
. 10.4271/2017-01-0689
66.
Breda
,
S.
,
D’Adamo
,
A.
,
Fontanesi
,
S.
,
Giovannoni
,
N.
,
Tests
,
F.
,
Irimescu
,
A.
,
Merola
,
S.
,
Tornatore
,
C.
, and
Valentino
,
G.
,
2016
, “
CFD Analysis of Combustion and Knock in an Optically Accessible GDI Engine
,”
SAE Int. J. Engines
,
9
(
1
), pp.
641
656
. 10.4271/2016-01-0601
67.
Kalghatgi
,
G. T.
,
Golombok
,
M.
, and
Snowdon
,
P.
,
1995
, “
Fuel Effects on Knock, Heat Release and “CARS” Temperatures in a Spark Ignition Engine
,”
Combust Sci. Technol.
,
110–111
(
1
), pp.
209
228
. 10.1080/00102209508951924
68.
Brecq
,
G.
,
Bellettre
,
J.
, and
Tazerout
,
M.
,
2003
, “
A New Indicator for Knock Detection in Gas SI Engines
,”
Int. J. Thermal Sci.
,
42
(
5
), pp.
523
532
. 10.1016/S1290-0729(02)00052-2
69.
Brecq
,
G.
, and
Le Corre
,
O.
,
2005
, “
Modeling of In-cylinder Pressure Oscillations Under Knocking Conditions: Introduction to Pressure Envelope Curve
,” SAE Paper No. 2005-01-1126.
You do not currently have access to this content.