Abstract

The turbulent combustion in gasoline engines is highly dependent on laminar flame speed SL. A major issue of the quasi-dimensional (QD) combustion model is an accurate prediction of the SL, which is unstable under low engine speeds and ultra-lean mixture. This work investigates the applicability of the combustion model with a refined SL correlation for evaluating the combustion characteristics of a high-tumble port gasoline engine operated under ultra-lean mixtures. The SL correlation is modified and validated for a five-component gasoline surrogate. Predicted SL values from the conventional and refined functions are compared with measurements taken from a constant-volume chamber under micro-gravity conditions. The SL data are measured at reference and elevated conditions. The results show that the conventional SL overpredicts the flame speeds under all conditions. Moreover, the conventional model predicts negative SL at equivalence ratio ϕ ≤ 0.3 and ϕ ≥ 1.9, while the revised SL is well validated against the measurements. The improved SL correlation is incorporated into the QD combustion model by a user-defined function. The engine data are measured at 1000–2000 rpm under engine load net indicated mean effective pressure (IMEPn) = 0.4–0.8 MPa and ϕ = 0.5. The predicted engine performances and combustions are well validated with the measured data, and the model sensitivity analysis also shows a good agreement with the engine experiments under cycle-by-cycle variations.

References

1.
SIP Innovative Combustion Technology
,
2019
, “
Brochure SIP “Pioneering the Future: Japanese Science, Technology and Innovation”
,” https://www8.cao.go.jp/cstp/panhu/sip_english/sip_en.html, Accessed March 1, 2019.
2.
Bassiony
,
M. A.
,
Sadiq
,
A. M.
,
Gergawy
,
M. T.
,
Ahmed
,
S. F.
, and
Ghani
,
S. A.
,
2018
, “
Investigating the Effect of Utilizing New Induction Manifold Designs on the Combustion Characteristics and Emissions of a Direct Injection Diesel Engine
,”
ASME. J. Energy Resour. Technol.
,
140
(
12
), p.
122202
. 10.1115/1.4041543
3.
Takahashi
,
D.
,
Nakata
,
K.
,
Yoshihara
,
Y.
, and
Omura
,
T.
,
2016
, “
Combustion Development to Realize High Thermal Efficiency Engines
,”
SAE Int. J. Engines
,
9
(
3
), pp.
1486
1493
. 10.4271/2016-01-0693
4.
Yoshihara
,
Y.
,
Nakata
,
K.
,
Takahashi
,
D.
,
Omura
,
T.
, and
Ota
,
A.
,
2016
, “
Development of High Tumble Intake-Port for High Thermal Efficiency Engines
,”
SAE Technical Paper
2016-01-0692. https://doi.org/10.4271/2016-01-0692
5.
Kaminaga
,
T.
,
Yamaguchi
,
K.
,
Ratnak
,
S.
,
Kusaka
,
J.
,
Fujikawa
,
T.
, and
Yamakawa
,
M.
,
2019
, “
A Study on Combustion Characteristics of a High Compression Ratio SI Engine With High Pressure Gasoline Injection
,”
SAE Technical Paper
2019-24-0106. 10.4271/2019-24-0106
6.
Jung
,
D.
, and
Iida
,
N.
,
2018
, “
An Investigation of Multiple Spark Discharge Using Multi-Coil Ignition System for Improving Thermal Efficiency of Lean SI Engine Operation
,”
Appl. Energy
,
212
(
1
), pp.
322
332
. 10.1016/j.apenergy.2017.12.032
7.
Sellnau
,
M.
,
Foster
,
M.
,
Moore
,
W.
,
Sinnamon
,
J.
,
Hoyer
,
K.
, and
Klemm
,
W.
,
2019
, “
Pathway to 50% Brake Thermal Efficiency Using Gasoline Direct Injection Compression Ignition
,”
SAE Int. J. Adv. Curr. Prac. Mobility
,
1
(
4
), pp.
1581
1603
. 10.4271/2019-01-1154
8.
Tanamura
,
M.
,
Nakai
,
S.
,
Nakatsuka
,
M.
,
Taki
,
S.
,
Ozawa
,
K.
,
Zhou
,
B.
,
Sok
,
R.
,
Daisho
,
Y.
, and
Kusaka
,
J.
,
2019
, “
A Fundamental Study on Combustion Characteristics in a Pre-Chamber Type Lean Burn Natural Gas Engine
,”
SAE Technical Paper
2019-24-0123. 10.4271/2019-24-0123
9.
Ratnak
,
S.
,
Kusaka
,
J.
,
Daisho
,
Y.
,
Yoshimura
,
K.
, and
Nakama
,
K.
,
2015
, “
Thermal Efficiency Improvement of a Lean-Boosted Spark-Ignition Engine by Multidimensional Simulation With Detailed Chemical Kinetics
,”
Int. J. Autom. Eng.
,
6
(
4
), pp.
97
104
. 10.20485/jsaeijae.6.4_97
10.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2020
, “
Limitations of Natural Gas Lean Burn Spark Ignition Engines Derived From Compression Ignition Engines
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122308
. 10.1115/1.4047404
11.
Ratnak
,
S.
,
Kusaka
,
J.
,
Daisho
,
Y.
,
Yoshimura
,
K.
, and
Nakama
,
K.
,
2016
, “
Experiments and Simulations of a Lean-Boost Spark Ignition Engine for Thermal Efficiency Improvement
,”
SAE Int. J. Engines
,
9
(
1
), pp.
379
396
.
12.
De Bellis
,
V.
,
Bozza
,
F.
, and
Tufano
,
D.
,
2017
, “
A Comparison Between Two Phenomenological Combustion Models Applied to Different SI Engines
,”
SAE Technical Paper
2017-01-2184. 10.4271/2017-01-2184
13.
Bozza
,
F.
,
Fontana
,
G.
,
Galloni
,
E.
, and
Torella
,
E.
,
2007
, “
3D-1D Analyses of the Turbulent Flow Field, Burning Speed and Knock Occurrence in a Turbocharged SI Engine
,”
SAE Technical Paper
2007-24-0029. 10.4271/2007-24-0029
14.
Grill
,
M.
,
Billinger
,
T.
, and
Bargende
,
M.
,
2006
, “
Quasi-Dimensional Modeling of Spark Ignition Engine Combustion With Variable Valve Train
,”
SAE Technical Paper
2006-01-1107. 10.4271/2006-01-1107
15.
Boiarciuc
,
A.
, and
Floch
,
A.
,
2011
, “
Evaluation of a 0D Phenomenological SI Combustion Model
,”
SAE Technical Paper
2011-01-1894. 10.4271/2011-01-1894
16.
Ibrahim
,
A. S.
, and
Ahmed
,
S. F.
,
2015
, “
Measurements of Laminar Flame Speeds of Alternative Gaseous Fuel Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032209
. 10.1115/1.4029738
17.
Samim
,
S.
,
Sadeq
,
A. M.
, and
Ahmed
,
S. F.
,
2016
, “
Measurements of Laminar Flame Speeds of Gas-to-Liquid-Diesel Fuel Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052213
. 10.1115/1.4033627
18.
Sadiq
,
A. M.
,
Sleiti
,
A. K.
, and
Ahmed
,
S. F.
,
2020
, “
Turbulent Flames in Enclosed Combustion Chambers: Characteristics and Visualization—A Review
,”
ASME J. Energy Resour. Technol.
,
142
(
8
), p.
080801
. 10.1115/1.4046460
19.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature
,”
Combust. Flame
,
48
(
1
), pp.
191
210
. 10.1016/0010-2180(82)90127-4
20.
Gülder
,
Ö.
,
1984
, “
Correlations of Laminar Combustion Data for Alternative S.I. Engine Fuels
,”
SAE Technical Paper
841000. https://doi.org/10.4271/841000
21.
Uesaka
,
H.
,
Matsui
,
R.
,
Doi
,
S.
,
Matsuura
,
S.
,
Kataoka
,
H.
, and
Segawa
,
D.
,
2017
, “
Study on Laminar Burning Velocity and Markstein Length of Gasoline Surrogate Fuel/Air Mixtures Using Constant Volume Vessel
,”
Proceeding of the 9th International Conference on Modeling and Diagnostics for Advanced Engine Systems.
,
Okayama, Japan
,
July 25–28
.
22.
Morel
,
T.
,
Rackmil
,
C.
,
Keribar
,
R.
, and
Jennings
,
M.
,
1988
, “
Model for Heat Transfer and Combustion in Spark Ignited Engines and Its Comparison With Experiments
,”
SAE Technical Paper
880198. 10.4271/880198
23.
Ratnak
,
S.
,
Kusaka
,
J.
, and
Daisho
,
Y.
,
2015
, “
3D Simulations on Premixed Laminar Flame Propagation of Iso-Octane/Air Mixture at Elevated Pressure and Temperature
,”
SAE Technical Paper
2015-01-0015. 10.4271/2015-01-0015
24.
Kee
,
R. J.
,
Grcar
,
J. F.
,
Smooke
,
M. D.
,
Miller
,
J. A.
, and
Meeks
,
E.
,
1998
,
PREMIX: A Fortran Program for Modeling Steady Laminar 1D Premixed Flames
,
Sandia National Laboratories
,
Albuquerque, NM
.
25.
Miyoshi
,
A.
, and
Sakai
,
Y.
,
2017
, “
Construction of a Detailed Kinetic Model for Gasoline Surrogate Mixtures
,”
Trans. Soc. Autom. Eng. Japan
,
48
(
5
), pp.
1021
1026
. 10.11351/jsaeronbun.48.1021
26.
Ameen
,
M. M.
,
Mirzaeian
,
M.
,
Millo
,
F.
, and
Som
,
S.
,
2018
, “
Numerical Prediction of Cyclic Variability in a Spark Ignition Engine Using a Parallel Large Eddy Simulation Approach
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052203
. 10.1115/1.4039549
27.
Yue
,
Z.
,
Edwards
,
K. D.
,
Sluders
,
C. S.
, and
Som
,
S.
,
2019
, “
Prediction of Cyclic Variability and Knock-Limited Spark Advance in a Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102201
. 10.1115/1.4043393
You do not currently have access to this content.