Abstract

This article composes a systematic design methodology to obtain optimal parameters of the Tesla turbine, which is applicable in water distribution systems, faced with the need to supply power for wireless sensors and other components used in smart water networks and the challenges associated with the feasibility of Tesla turbine in a small scale. The optimal geometric model is sought by using a theoretical model relating turbine physical properties and flow conditions to power output by solving Navier–Stokes equations for steady laminar incompressible flow between adjacent disks. The model shows that the proposed design with dimensions and flow conditions relevant to water pipe networks can achieve a power output of 1.55 mW using a 2.5-cm diameter turbine given a pressure difference of 140 Pa. At 70 Pa using a 1-cm diameter turbine, a power output of 0.17 mW can be obtained. This study shows a great potential in application of Tesla turbine for energy harvesting in water distribution systems.

References

1.
Zhou
,
B.
,
Liu
,
A.
,
Wang
,
X.
,
She
,
Y.
, and
Lau
,
V.
,
2018
, “
Compressive Sensing-Based Multiple-Leak Identification for Smart Water Supply Systems
,”
IEEE Internet Things J.
,
5
(
2
), pp.
1228
1241
. 10.1109/JIOT.2018.2812163
2.
Quadflieg
,
T.
,
Goldfeld
,
Y.
,
Dittel
,
G.
, and
Gries
,
T.
,
2018
, “
New Age Advanced Smart Water Pipe Systems Using Textile Reinforced Concrete
,”
Procedia Manuf.
,
21
, pp.
376
383
. 10.1016/j.promfg.2018.02.134
3.
Radhakrishnan
,
V.
, and
Wu
,
W.
,
2018
, “
IoT Technology for Smart Water System
,”
2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS)
,
Exeter, UK
,
June 28–30
. https://dx.doi.org/ 10.1109/HPCC/SmartCity/DSS.2018.00246
4.
Bragalli
,
C.
,
Neri
,
M.
, and
Toth
,
E.
,
2019
, “
Effectiveness of Smart Meter-Based Urban Water Loss Assessment in a Real Network With Synchronous and Incomplete Readings
,”
Environ. Modell. Software
,
112
, pp.
128
142
. 10.1016/j.envsoft.2018.10.010
5.
Mounce
,
S. R.
,
Khan
,
A.
,
Wood
,
A.
,
Day
,
A.
,
Widdop
,
P.
, and
Machell
,
J.
,
2003
, “
Sensor-Fusion of Hydraulic Data for Burst Detection and Location in a Treated Water Distribution System
,”
Inform. Fusion
,
4
(
3
), pp.
217
229
. 10.1016/S1566-2535(03)00034-4
6.
Buchberger
,
S. G.
, and
Nadimpalli
,
G.
,
2004
, “
Leak Estimation in Water Distribution Systems by Statistical Analysis of Flow Readings
,”
J. Water Resour. Plan. Manag.
,
130
(
4
), pp.
321
329
. 10.1061/(ASCE)0733-9496(2004)130:4(321)
7.
Khan
,
A.
,
Widdop
,
P. D.
,
Day
,
A. J.
,
Wood
,
A. S.
,
Mounce
,
S. R.
, and
Machell
,
J.
,
2005
, “
Performance Assessment of Leak Detection Failure Sensors Used in a Water Distribution System
,”
J. Water Supply Res. Technol. AQUA
,
54
(
1
), pp.
25
36
. 10.2166/aqua.2005.0003
8.
Traum
,
M. J.
,
2011
, “
Harvesting Built Environments for Accessible Energy Audit Training
,”
Proceedings of the 2nd International Conference on the Constructed Environment
,
Chicago, IL
,
Oct. 29–30
.
9.
Ye
,
G.
, and
Soga
,
K.
,
2012
, “
Energy Harvesting From Water Distribution Systems
,”
J. Energy Eng.
,
138
(
1
), pp.
7
17
. 10.1061/(ASCE)EY.1943-7897.0000057
10.
Sadeghioon
,
A. M.
,
Metje
,
N.
,
Chapman
,
D. N.
, and
Anthony
,
C. J.
,
2014
, “
SmartPipes: Smart Wireless Sensor Networks for Leak Detection in Water Pipelines
,”
J. Sens. Actuator Netw.
,
3
(
1
), pp.
64
78
. 10.3390/jsan3010064
11.
Metje
,
N.
,
Chapman
,
D. N.
,
Cheneler
,
D.
,
Ward
,
M.
, and
Thomas
,
A. M.
,
2011
, “
Smart Pipes—Instrumented Water Pipes, Can This Be Made a Reality?
,”
Sensors
,
11
(
8
), pp.
7455
7475
. 10.3390/s110807455
12.
Prauzek
,
M.
,
Konecny
,
J.
,
Borova
,
M.
,
Janosova
,
K.
,
Hlavica
,
J.
, and
Musilek
,
P.
,
2018
, “
Energy Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless Sensor Networks: A Review
,”
Sensors
,
18
(
8
), p.
2446
. 10.3390/s18082446
13.
Zhou
,
G.
,
Huang
,
L.
,
Li
,
W.
, and
Zhu
,
Z.
,
2014
, “
Harvesting Ambient Environmental Energy for Wireless Sensor Networks: A Survey
,”
J. Sensors
,
2014
, pp.
1
20
. 10.1155/2014/815467
14.
Raghunathan
,
V. K. A.
,
Hsu
,
J.
,
Friedman
,
J.
, and
Srivastava
,
M.
,
2005
, “
Design Considerations for Solar Energy Harvesting Wireless Embedded Systems
,”
Proceedings of the 4th International Symposium on Information Processing in Sensor Networks
,
Boise, ID
,
Apr. 15
. http://dx.doi.org/10.1109/IPSN.2005.1440973
15.
Glynne-Jones
,
P.
,
Tudor
,
M.
,
Beeby
,
S. P.
, and
White
,
N. M.
,
2004
, “
An Electromagnetic, Vibration-Powered Generator for Intelligent Sensor Systems
,”
Sens. Actuators, A
,
110
(
1–3
), pp.
344
349
. 10.1016/j.sna.2003.09.045
16.
Beeby
,
S. P.
,
Torah
,
R. N.
,
Tudor
,
M. J.
,
Glynne-Jones
,
P.
,
O'Donnell
,
T.
,
Saha
,
C. R.
, and
Roy
,
S.
,
2007
, “
A Micro Electromagnetic Generator for Vibration Energy Harvesting
,”
J. Micromech. Microeng.
,
17
(
7
), pp.
1257
1265
. 10.1088/0960-1317/17/7/007
17.
Cunefare
,
K. A.
,
Skow
,
E. A.
,
Erturk
,
A.
,
Savor
,
J.
,
Verma
,
N.
, and
Cacan
,
M. R.
,
2013
, “
Energy Harvesting From Hydraulic Pressure Fluctuations
,”
Smart Materials Structures
,
22
(
2
), p.
025036
. 10.1088/0964-1726/22/2/025036
18.
Zhang
,
X.
,
2019
,
Design and Optimization of an mhd Energy Harvester for Intelligent Pipe Systems
,
MIT
,
Boston, MA
.
19.
Derakhshan
,
S.
, and
Kasaeian
,
N.
,
2014
, “
Optimization, Numerical, and Experimental Study of a Propeller Pump as Turbine
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012005
. 10.1115/1.4026312
20.
Tesla
,
N.
,
1913
,
U.S. Patent 1,061,206
.
21.
Boyd
,
K. E.
, and
Rice
,
W.
,
1968
, “
Laminar Inward Flow of an Incompressible Fluid Between Rotating Disks, With Full Peripheral Admission
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
229
237
. 10.1115/1.3601185
22.
Rice
,
W.
,
1965
, “
An Analytical and Experimental Investigation of Multiple-Disk Turbines
,”
J. Eng. Power
,
87
(
1
), pp.
29
35
. 10.1115/1.3678134
23.
Matsch
,
L.
, and
Rice
,
W.
,
1968
, “
An Asymptotic Solution for Laminar Flow of an Incompressible Fluid Between Rotating Disks
,”
ASME J. Appl. Mech.
,
35
(
1
), pp.
155
159
. 10.1115/1.3601130
24.
Lawn
,
M. L.
, and
Rice
,
W.
,
1974
, “
Calculated Design Data for the Multiple-Disk Turbine Using Incompressible Fluid
,”
ASME J. Fluid. Eng.
,
96
(
3
), pp.
252
258
. 10.1115/1.3447148
25.
Truman
,
C. R.
,
Rice
,
W.
, and
Jankowski
,
D. F.
,
1978
, “
Laminar Throughflow of Varying-Quality Steam Between Corotating Disks
,”
ASME J. Fluid. Eng.
,
100
(
2
), pp.
194
200
. 10.1115/1.3448629
26.
Hoya
,
G. P.
, and
Guha
,
A.
,
2009
, “
Design of a Test Rig and Study of the Performance and Efficiency of a Tesla Disc Turbine
,”
J. Power Energy
,
223
(
4
), pp.
451
465
. 10.1243/09576509JPE664
27.
Guha
,
A.
, and
Sengupta
,
S.
,
2014
, “
Similitude and Scaling Laws for the Rotating Flow Between Concentric Discs
,”
J. Power Energy
,
228
(
4
), pp.
429
439
. 10.1177/0957650914523947
28.
Deng
,
Q.
,
Qi
,
W.
, and
Feng
,
Z.
,
2013
, “
Improvement of a Theoretical Analysis Method for Tesla Turbines
,”
Proceedings of ASME Turbo Expo 2013
,
San Antonio, TX
,
June 3–7
, Paper No. GT2013-95425, p. V06CT40A012; pp.
1
14
. https://doi.org/10.1115/GT2013-95425
29.
Qi
,
W.
,
Deng
,
Q.
,
Feng
,
Z.
, and
Yuan
,
Q.
,
2016
, “
Influence of Disc Spacing Distance on the Aerodynamic Performance and Flow Field of Tesla Turbines
,”
Proceedings of ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
, Paper No. GT2016-57971, p. V008T23A035; 1–10. https://doi.org/10.1115/GT2016-57971
30.
Guha
,
A.
, and
Sengupta
,
S.
,
2014
, “
The Fluid Dynamics of Work Transfer in the Non-Uniform Viscous Rotating Flow Within a Tesla Disc Turbomachine
,”
Phys. Fluids
,
26
(
3
), p.
033601
. 10.1063/1.4866263
31.
Yang
,
Z.
,
Weiss
,
H. L.
, and
Traum
,
M. J.
,
2013
, “
Gas Turbine Dynamic Dynamometry: A New Energy Engineering Laboratory Module
,”
Proceedings of the 2013 American Society for Engineering Education (ASEE) North Midwest Section Conference
,
Fargo, ND
,
Oct. 17–18
, ASEE-NMWSC2013-0023.
32.
Usman
,
M.
,
Khan
,
S.
,
Ali
,
E.
,
Maqsood
,
M. I.
, and
Nawaz
,
H.
,
2013
, “
Modern Improved and Effective Design of Boundary Layer Turbine for Robust Control and Efficient Production of Green Energy
,”
J. Physics: Conference Series
,
439
(
1
), p.
012043
. 10.1088/1742-6596/439/1/012043
33.
Alrabie
,
M. S.
,
Altamimi
,
F. N.
,
Altarrgemy
,
M. H.
,
Hadi
,
F.
,
Akbar
,
M. K.
, and
Traum
,
M. J.
,
2017
, “
Method to Design a Hydro Tesla Turbine for Sensitivity to Varying Laminar Reynolds Number Modulated by Changing Working Fluid Viscosity
,”
Proceedings of 2017 ASME Power and Energy Conference
,
Charlotte, NC
,
June 26–30
, Paper No. ES2017-3442, V001T07A004; 1–10https://doi.org/10.1115/ES2017-3442.
34.
Traum
,
M.
, and
Weiss
,
H.
,
2019
, “
Tiny Tesla Turbine Analytical Performance Validation Via Dynamic Dynamometry
,”
Proceedings of the SUPEHR19 SUstainable PolyEnergy Generation and HaRvesting (SUPEHR’19)
,
Savona, Italy
, Article No. 03024, pp.
1
8
, Energy Micropolygeneration and Harvesting. https://doi.org/10.1051/e3sconf/201911303024
35.
Emran
,
T.
,
Alexander
,
R.
,
Stallings
,
C.
,
DeMay
,
M.
, and
Traum
,
M.
,
2010
, “
Method to Accurately Estimate Tesla Turbine Stall Torque for Dynamometer or Generator Load Selection
,”
ASME Early Career Tech. J.
,
10
, pp.
158
164
.
36.
Rice
,
W.
,
1991
, “
Tesla Turbomachinery
,”
Proceedings of 4th International Tesla Symposium
,
Belgrade, Yugoslavia
,
Sept. 22–25
, Serbian Academy of Sciences and Arts.
37.
Gupta
,
H. E.
, and
Kodali
,
S. P.
,
2013
, “
Design and Operation of Tesla Turbo Machine—A State of the Art Review
,”
Int. J. Adv. Transport Phenomena
,
2
(
1
), pp.
7
14
.
38.
Romanin
,
V. D.
,
Krishnan
,
V. G.
,
Maharbiz
,
M. M.
, and
Carey
,
V. P.
,
2012
, “
Experimental and Analytical Study of Sub-Watt Scale Tesla Turbine Performance
,”
Proceedings of ASME 2012 International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 9–15
, pp.
1005
1014
.
39.
Pandey
,
R. J.
,
Pudasaini
,
S.
,
Dhakal
,
S.
,
Uprety
,
R. B.
, and
Neopane
,
H. P.
,
2014
, “
Design and Computational Analysis of 1kW Tesla Turbine
,”
Int. J. Sci. Res. Pub.
,
4
(
11
), pp.
314
318
.
40.
Hasan
,
A.
, and
Benzamia
,
A.
,
2014
, “
Investigating the Impact of Air Temperature on the Performance of a Tesla Turbine Using CFD Modeling
,”
Int. J. Eng. Innovation Res.
,
3
(
6
), pp.
794
802
.
41.
Lampart
,
P.
, and
Jędrzejewski
,
L.
,
2011
, “
Investigation of Aerodynamics of Tesla Bladeless Microturbines
,”
J. Theoretical Appl. Mech.
,
49
(
2
), pp.
477
499
.
42.
Choon
,
T. W.
,
Rahman
,
A. A.
,
Jer
,
F. S.
, and
Lim
,
E. A.
,
2011
, “
Optimization of Tesla Turbine Using Computational Fluid Dynamics Approach
,”
Proceedings of 2011 IEEE Symposium on Industrial Electronics and Applications (ISIEA)
,
Langkawi, Malaysia
,
Sept. 25–28
http://dx.doi.org/10.1109/ISIEA.2011.6108756.
43.
Fenzhu Jia
,
B. Y.
,
Zhoua
,
Y.
,
Dub
,
F.
,
Zhuc
,
H.
,
Zhaob
,
S.
,
Lib
,
G.
,
Zhud
,
X.
, and
Ding
,
S.
,
2019
, “
Investigation on Performance and Implementation of Tesla Turbine in Engine Waste Heat Recovery
,”
Energy Conservation Manage.
,
179
, pp.
326
338
. 10.1016/j.enconman.2018.10.071
44.
Placco
,
G. M.
, and
Guimarães
,
L. N. F.
,
2020
, “
Power Analysis on a 70-mm Rotor Tesla Turbine
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
031202
. 10.1115/1.4044569
45.
Carey
,
V. P.
,
2010
, “
Assessment of Tesla Turbine Performance for Small Scale Solar Rankine Combined Heat and Power Systems
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
122301
10.1115/1.4001356
46.
Ho-Yan
,
B. P.
,
2011
, “
Tesla Turbine for Pico Hydro Applications
,”
Guelph Eng. J.
, pp.
1
8
.
47.
Liu
,
S.
,
Yin
,
H.
,
Xiong
,
Y.
, and
Xiao
,
X.
,
2017
, “
A Comparative Analysis of Single Nozzle and Multiple Nozzles Arrangements for Syngas Combustion in Heavy Duty Gas Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022004
. 10.1115/1.4034232
48.
Traum
,
M. J.
,
Hadi
,
F.
, and
Akbar
,
M. K.
,
2018
, “
Extending “Assessment of Tesla Turbine Performance Model for Sensitivity-Focused Experimental Design
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032005
. 10.1115/1.4037967
49.
The Engineering ToolBox
,
2003
, “
Maximum Flow Velocities in Water Systems
,” https://www.engineeringtoolbox.com/flow-velocity-water-pipes-d_385.html, Accessed January 20, 2020.
50.
Council
,
N. R.
,
2006
,
Drinking Water Distribution Systems: Assessing and Reducing Risks
,
The National Academies Press
,
Washington, DC
.
51.
Krishnan
,
V.
,
2015
, “
Design and Fabrication of cm-Scale Tesla Turbines
,”
UC Berkeley Electronic Theses and Dissertations
,
University of California, Berkeley
,
Berkeley, CA
.
52.
Romanin
,
V. D.
,
2012
, “
Theory and Performance of Tesla Turbines
,”
UC Berkeley Electronic Theses and Dissertations
,
University of California, Berkeley
,
Berkeley, CA
.
53.
Williamson
,
S. J.
,
Stark
,
B. H.
, and
Booker
,
J. D.
,
2014
, “
Low Head Pico Hydro Turbine Selection Using a Multicriteria Analysis
,”
Renewable Energy
,
61
, pp.
43
50
. https://doi.org/10.1016/j.renene.2012.06.020
54.
Razak
,
J. A.
,
Yusoff
,
A. B.
,
Alghoul
,
M.
,
Zainol
,
M. S. Z. A.
, and
Sopian
,
K.
,
2010
, “
Application of Crossflow Turbine in off-Grid Pico Hydro Renewable Energy System
,”
Recent Adv. Appl. Math.
, pp.
519
526
.
You do not currently have access to this content.