Abstract

In this study, the compatibility of exergy destruction minimization (EDM) as the main objective is checked by plotting coefficient of performance (COP), exergy coefficient of performance (ECOP), and overall exergy destruction rate by simultaneously varying input operating temperatures for a 28 TR cooling load absorption system. The component-wise variation in exergy destruction is also considered and it is found that the maxima of COP and ECOP, and the minima of overall exergy destruction lies on a common point, and when the variation of operating temperatures is further extended, the exergy destruction in one of the component becomes negative, which marks the upper bound of the present analysis. At highest valid generator temperature (155 °C), the minimum possible overall exergy destruction rate is 53.50 kW and maximum COP is 0.523. Through inverse optimization (IO) using dragonfly algorithm (DA), the same overall exergy destruction rate is achieved for a wide range of generator temperatures much below than 155 °C, and as low as 127.34 °C. The above variation is explained in terms of flow ratio, mass flowrate of steam, and mass flowrate of cooling water.

References

1.
Misra
,
R. D.
,
Sahoo
,
P. K.
, and
Gupta
,
A.
,
2006
, “
Thermoeconomic Evaluation and Optimization of an Aqua-Ammonia Vapor-Absorption Refrigeration System
,”
Int. J. Refrig.
,
29
(
1
), pp.
47
59
. 10.1016/j.ijrefrig.2005.05.015
2.
Srinivas
,
T.
, and
Reddy
,
B. V.
,
2014
, “
Thermal Optimization of a Solar Thermal Cooling Cogeneration Plant at Low Temperature Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021204
. 10.1115/1.4026202
3.
Demirkaya
,
G.
,
Padilla
,
R. V.
,
Fontalvo
,
A.
,
Lake
,
M.
, and
Lim
,
Y. Y.
,
2017
, “
Thermal and Exergetic Analysis of the Goswami Cycle Integrated With Mid-Grade Heat Sources
,”
Entropy
,
19
(
8
), p.
416
. 10.3390/e19080416
4.
Dario
,
C. G.
,
2019
, “
Advanced Exergy Analysis of a Compression-Absorption Cascade Refrigeration System
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042002
. 10.1115/1.4042003
5.
Pandya
,
B.
,
Kumar
,
V.
,
Patel
,
J.
, and
Matawala
,
V. K.
,
2018
, “
Optimum Heat Source Temperature and Performance Comparison of LiCl-H2O and LiBr-H2O Type Solar Cooling System
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051204
. 10.1115/1.4038918
6.
Cheng
,
X.
, and
Liang
,
X.
,
2013
, “
Analysis and Optimizations of Thermodynamic Performance of an Air Conditioning System for Room Heating
,”
Energy Build.
,
67
(
12
), pp.
387
391
. 10.1016/j.enbuild.2013.08.034
7.
Cheng
,
X.
, and
Liang
,
X.
,
2013
, “
Discussion on the Applicability of Entropy Generation Minimization to the Analysis and Optimizations of Thermodynamic Processes
,”
Energy Conserv. Manage.
,
73
(
9
), pp.
121
127
. 10.1016/j.enconman.2013.04.012
8.
Klein
,
S. A.
, and
Reindl
,
D. T.
,
1998
, “
The Relationship of Optimum Heat Exchanger Allocation and Minimum Entropy Generation Rate for Refrigeration Cycles
,”
ASME J. Energy Resour. Technol.
,
120
(
2
), pp.
172
178
. 10.1115/1.2795030
9.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2019
, “
Exergy Analysis of Single to Triple Effect Lithium Bromide-Water Vapour Absorption Cycles and Optimization of the Operating Parameters
,”
Energy Conserv. Manage.
,
180
(
1
), pp.
1225
1246
. 10.1016/j.enconman.2018.11.062
10.
Singh
,
K.
, and
Das
,
R.
,
2017
, “
An Improved Constrained Inverse Optimization Method for Mechanical Draft Cooling Towers
,”
Appl. Therm. Eng.
,
114
(
3
), pp.
573
582
. 10.1016/j.applthermaleng.2016.12.002
11.
Gogoi
,
T. K.
,
2016
, “
Estimation of Operating Parameters of a Water-LiBr Vapor Absorption Refrigeration System Through Inverse Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022002
. 10.1115/1.4031833
12.
Best
,
R.
,
Islas
,
J.
, and
Martínez
,
M.
,
1993
, “
Exergy Efficiency of an Ammonia-Water Absorption System for Ice Production
,”
Appl. Energy
,
45
(
3
), pp.
241
256
. 10.1016/0306-2619(93)90034-M
13.
Mirjalili
,
S.
,
2016
, “
Dragonfly Algorithm: A New Meta-Heuristic Optimization Technique for Solving Single-Objective, Discrete, and Multi-Objective Problems
,”
Neural Comput. Appl.
,
27
(
4
), pp.
1053
1073
. 10.1007/s00521-015-1920-1
14.
Said
,
S. A. M.
,
Spindler
,
K.
,
El-Shaarawai
,
M. A.
,
Siddiqui
,
M. U.
,
Schmid
,
F.
,
Bierling
,
B.
, and
Khan
,
M. M. A.
,
2016
, “
Design, Construction and Operation of a Solar Powered Ammonia-Water Absorption Refrigeration System in Saudi Arabia
,”
Int. J. Refrig.
,
62
(
2
), pp.
222
231
. 10.1016/j.ijrefrig.2015.10.026
15.
Higa
,
M.
,
Yamamoto
,
E. Y.
,
de Oliveria
,
J. C. D.
, and
Conceicao
,
W. A. S.
,
2018
, “
Evaluation of the Integration of an Ammonia-Water Power Cycle in an Absorption Refrigeration System of an Industrial Plant
,”
Energy Convers. Manage.
,
178
(
12
), pp.
265
276
. 10.1016/j.enconman.2018.10.041
You do not currently have access to this content.