Abstract

Thermal energy storage (TES) using thermocline technology with phase change materials (PCM) is a promising technique for peak-shaving operation in cogeneration units. One of the disadvantages of this connotation is the use of the highly cost PCM capsules in a water tank. To circumvent this issue, a new thermocline tank connotation is proposed. The tank is packed with a mixture of solid filler pills and PCMs capsules, forming a multi-layered packed-bed system. A transient concentric-dispersion model is developed to assess the dynamic performance of a solid-PCM multi-layered packed-bed (SPMLPB) tank. The influences of the PCMs volume fraction (VF) and the charge and discharge dimensionless cutoff temperatures criterion on the dynamic performance have been investigated. The results show that the VF of PCMs influences the system's behavior, in terms of both energy storage and release. As the PCMs volume fraction increases from 10% to 40%, the amount of energy storage, energy release, and latent utilization ratio increased by 82.65%, 73.94%, and 55%, respectively, while the overall exergy efficiency drops by 6.3%. Besides, increasing both the charge and discharge cutoff temperatures criterion (STch*/STdisch*) enhances the total utilization ratio and energy recovered. When STch* increases from 0.27 to 0.7, the total utilization ratio and energy recovered increased by 63.63% and 28.67%, respectively, by maintains STdisch*=0.26.

References

1.
Sun
,
F.
,
Cheng
,
L.
,
Fu
,
L.
, and
Gao
,
J.
,
2017
, “
New Low Temperature Industrial Waste Heat District Heating System Based on Natural gas Fired Boilers With Absorption Heat Exchangers
,”
Appl. Therm. Eng.
,
125
(
10
), pp.
1437
1445
.
2.
Arteconi
,
A.
,
Hewitt
,
N. J.
, and
Polonara
,
F.
,
2013
, “
Domestic Demand-Side Management (DSM): Role of Heat Pumps and Thermal Energy Storage (TES) Systems
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
155
165
.
3.
Mostafavi
,
S. S.
,
Saffar-avval
,
M.
,
Behboodi
,
S.
, and
Mansoori
,
Z.
,
2013
, “
Hourly Energy Analysis and Feasibility Study of Employing a Thermocline TES System for an Integrated CHP and DH Network
,”
Energy Convers. Manag.
,
68
(
4
), pp.
281
292
.
4.
Wang
,
H.
,
Yin
,
W.
,
Abdollahi
,
E.
,
Lahdelma
,
R.
, and
Jiao
,
W.
,
2015
, “
Modelling and Optimization of CHP Based District Heating System With Renewable Energy Production and Energy Storage
,”
Appl. Energy
,
159
(
12
), pp.
401
421
.
5.
Xu
,
C.
,
Wang
,
Z.
,
He
,
Y.
,
Li
,
X.
, and
Bai
,
F.
,
2012
, “
Sensitivity Analysis of the Numerical Study on the Thermal Performance of a Packed-Bed Molten Salt Thermocline Thermal Storage System
,”
Appl. Energy
,
92
(
4
), pp.
65
75
.
6.
Karim
,
M. A.
,
2011
, “
Experimental Investigation of a Stratified Chilled-Water Thermal Storage System
,”
Appl. Therm. Eng.
,
31
(
11–12
), pp.
1853
1860
.
7.
Karim
,
A.
,
Burnett
,
A.
, and
Fawzia
,
S.
,
2018
, “
Investigation of Stratified Thermal Storage Tank Performance for Heating and Cooling Applications
,”
Energies
,
11
(
5
), p.
1049
.
8.
Guo
,
H.
,
ELSihy
,
E. S.
,
Liao
,
Z.
, and
Du
,
X.
,
2021
, “
A Comparative Study on the Performance of Single and Multi-layer Encapsulated Phase Change Material Packed-Bed Thermocline Tanks
,”
Energies
,
14
(
8
), p.
2175
. doi.org/10.3390/ en14082175 Academic
9.
Jegadheeswaran
,
S.
, and
Pohekar
,
S. D.
,
2009
, “
Performance Enhancement in Latent Heat Thermal Storage System: A Review
,”
Renew. Sustain. Energy Rev.
,
13
(
9
), pp.
2225
2244
.
10.
Wu
,
M.
,
Xu
,
C.
, and
He
,
Y. L.
,
2014
, “
Dynamic Thermal Performance Analysis of a Molten-Salt Packed-Bed Thermal Energy Storage System Using PCM Capsules
,”
Appl. Energy
,
121
(
5
), pp.
184
195
.
11.
Felix Regin
,
A.
,
Solanki
,
S. C.
, and
Saini
,
J. S.
,
2009
, “
An Analysis of a Packed bed Latent Heat Thermal Energy Storage System Using PCM Capsules: Numerical Investigation
,”
Renew. Energy
,
34
(
7
), pp.
1765
1773
.
12.
Kumar
,
G. S.
,
Nagarajan
,
D.
,
Chidambaram
,
L. A.
,
Kumaresan
,
V.
,
Ding
,
Y.
, and
Velraj
,
R.
,
2016
, “
Role of PCM Addition on Stratification Behaviour in a Thermal Storage Tank—An Experimental Study
,”
Energy
,
115
(
11
), pp.
1168
1178
.
13.
Xia
,
L.
,
Zhang
,
P.
, and
Wang
,
R. Z.
,
2010
, “
Numerical Heat Transfer Analysis of the Packed Bed Latent Heat Storage System Based on an Effective Packed Bed Model
,”
Energy
,
35
(
5
), pp.
2022
2032
.
14.
Zhao
,
W.
,
Neti
,
S.
, and
Oztekin
,
A.
,
2013
, “
Heat Transfer Analysis of Encapsulated Phase Change Materials
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
143
151
.
15.
Nallusamy
,
N.
,
Sampath
,
S.
, and
Velraj
,
R.
,
2007
, “
Experimental Investigation on a Combined Sensible and Latent Heat Storage System Integrated With Constant/Varying (Solar) Heat Sources
,”
Renew. Energy
,
32
(
7
), pp.
1206
1227
.
16.
He
,
Z.
,
Wang
,
X.
,
Du
,
X.
,
Amjad
,
M.
,
Yang
,
L.
, and
Xu
,
C.
,
2019
, “
Experiments on Comparative Performance of Water Thermocline Storage Tank With and Without Encapsulated Paraffin Wax Packed Bed
,”
Appl. Therm. Eng.
,
147
, pp.
188
197
.
17.
He
,
Z.
,
Wang
,
X.
,
Du
,
X.
,
Xu
,
C.
, and
Yang
,
L.
,
2019
, “
Cyclic Characteristics of Water Thermocline Storage Tank With Encapsulated PCM Packed Bed
,”
Int. J. Heat Mass Transf.
,
139
(
8
), pp.
1077
1086
.
18.
Du
,
X.
,
He
,
Z.
,
Wang
,
X.
,
Xu
,
C.
, and
Yang
,
L.
,
2018
, “
Unsteady Characteristics of Water Thermocline Storage Tank With Encapsulated Paraffin Wax Packed Bed
,”
International Heat Transfer Conference
, Vol. 2018, pp.
4287
4294
.
19.
Wu
,
S.
,
Fang
,
G.
, and
Liu
,
X.
,
2011
, “
Dynamic Discharging Characteristics Simulation on Solar Heat Storage System With Spherical Capsules Using Paraffin as Heat Storage Material
,”
Renew. Energy
,
36
(
4
), pp.
1190
1195
.
20.
Oró
,
E.
,
Castell
,
A.
,
Chiu
,
J.
,
Martin
,
V.
, and
Cabeza
,
L. F.
,
2013
, “
Stratification Analysis in Packed Bed Thermal Energy Storage Systems
,”
Appl. Energy
,
109
(
9
), pp.
476
487
.
21.
Nkwetta
,
D. N.
,
Vouillamoz
,
P. E.
,
Haghighat
,
F.
,
El-Mankibi
,
M.
,
Moreau
,
A.
, and
Daoud
,
A.
,
2014
, “
Impact of Phase Change Materials Types and Positioning on Hot Water Tank Thermal Performance: Using Measured Water Demand Profile
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
460
468
.
22.
Domański
,
R.
, and
Fellah
,
G.
,
1996
, “
Exergy Analysis for the Evaluation of a Thermal Storage System Employing PCMS with Different Melting Temperatures
,”
Appl. Therm. Eng.
,
16
(
11
), pp.
907
919
.
23.
Gong ZX
,
M. A.
,
1997
, “
Thermodynamic Optimization of the Thermal Process in Energy Storage Using Multiple Phase Change Materials
,”
Appl. Therm. Eng.
,
17
(
11
), pp.
1067
1083
.
24.
Kousksou
,
T.
,
Strub
,
F.
,
Castaing Lasvignottes
,
J.
,
Jamil
,
A.
, and
Bédécarrats
,
J. P.
,
2007
, “
Second Law Analysis of Latent Thermal Storage for Solar System
,”
Sol. Energy Mater. Sol. Cells
,
91
(
14
), pp.
1275
1281
.
25.
Aldoss
,
T. K.
, and
Rahman
,
M. M.
,
2014
, “
Comparison Between the Single-PCM and Multi-PCM Thermal Energy Storage Design
,”
Energy Convers. Manag.
,
83
(
7
), pp.
79
87
.
26.
Zhao
,
B.
,
Cheng
,
M.
,
Liu
,
C.
, and
Dai
,
Z.
,
2018
, “
System-Level Performance Optimization of Molten-Salt Packed-Bed Thermal Energy Storage for Concentrating Solar Power
,”
Appl. Energy
,
226
, pp.
225
239
.
27.
Galione
,
P. A.
,
Pérez-Segarra
,
C. D.
,
Rodríguez
,
I.
,
Oliva
,
A.
, and
Rigola
,
J.
,
2015
, “
Multi-Layered Solid-PCM Thermocline Thermal Storage Concept for CSP Plants. Numerical Analysis and Perspectives
,”
Appl. Energy
,
142
(
3
), pp.
337
351
.
28.
Li
,
M. J.
,
Qiu
,
Y.
, and
Li
,
M. J.
,
2018
, “
Cyclic Thermal Performance Analysis of a Traditional Single-Layered and of a Novel Multi-Layered Packed-Bed Molten Salt Thermocline Tank
,”
Renew. Energy
,
118
(
4
), pp.
565
578
.
29.
Muñoz-Sánchez
,
B.
,
Iparraguirre-Torres
,
I.
,
Madina-Arrese
,
V.
,
Izagirre-Etxeberria
,
U.
,
Unzurrunzaga-Iturbe
,
A.
, and
García-Romero
,
A.
,
2015
, “
Encapsulated High Temperature PCM as Active Filler Material in a Thermocline-Based Thermal Storage System
,”
Energy Procedia
,
69
(
5
), pp.
937
946
.
30.
Khashayar Hakamian
,
R. B. L.
,
Anderson
,
K. R.
, and
Shafahi
,
M.
,
2019
, “
Thermal Design and Analysis of a Solid-State Grid-Tied Thermal Energy Storage for Hybrid Compressed Air Energy Storage Systems
,”
ASME J. Energy Resour. Technol.
,
141
(6), p.
061903
.
31.
Elfeky
,
K. E.
,
Li
,
X.
,
Ahmed
,
N.
,
Lu
,
L.
, and
Wang
,
Q.
,
2019
, “
Optimization of Thermal Performance in Thermocline Tank Thermal Energy Storage System With the Multilayered PCM(s) for CSP Tower Plants
,”
Appl. Energy
,
243
, pp.
175
190
.
32.
ELSihy
,
E. S.
,
Wang
,
X.
,
Xu
,
C.
, and
Du
,
X.
,
2021
, “
Investigation on Simultaneous Charging and Discharging Process of Water Thermocline Storage Tank Employed in Combined Heat and Power Units
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
032001
.
33.
Wakao
,
S.
, and
and Kaguei
,
N.
,
1982
,
Heat and Mass Transfer in Packed Beds
,
Gordon and Breach Science Publishers
,
New York
.
34.
Wakao
,
N.
,
Kaguei
,
S.
, and
Funazkri
,
T.
,
1979
, “
Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds
,”
Chem. Eng. Sci.
,
34
(
1–2
), pp.
325
336
.
35.
Abdulla
,
A.
, and
Reddy
,
K. S.
,
2017
, “
Effect of Operating Parameters on Thermal Performance of Molten Salt Packed-Bed Thermocline Thermal Energy Storage System for Concentrating Solar Power Plants
,”
Int. J. Therm. Sci.
,
121
(
11
), pp.
30
44
.
36.
Hänchen
,
M.
,
Brückner
,
S.
, and
Steinfeld
,
A.
,
2011
, “
High-Temperature Thermal Storage Using a Packed Bed of Rocks—Heat Transfer Analysis and Experimental Validation
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1798
1806
.
37.
Beek
,
J.
,
1962
, “Design of Packed Catalytic Reactors,”
Advances in Chemical Engineering
,
J.
Beek
, ed.,
Elsevier
,
New York
, pp.
203
271
.
38.
Gonzo
,
E. E.
,
2002
, “Estimating Correlations for the Effective Thermal Conductivity of Granular Materials,”
Chem. Eng. J.
,
90
(
3
), pp.
299
302
.
39.
Gunarathne
,
D. S.
,
Chmielewski
,
J. K.
, and
Yang
,
W.
,
2014
, “
Pressure Drop Prediction of a Gasifier Bed With Cylindrical Biomass Pellets
,”
Appl. Energy
,
113
(
1
), pp.
258
266
.
40.
Pacheco
,
J. E.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
,
2002
, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
153
159
.
41.
ELSihy
,
E. S.
,
Wang
,
X.
,
Xu
,
C.
, and
Du
,
X.
,
2021
, “
Numerical Investigation on Simultaneous Charging and Discharging Process of Molten-Salt Packed-Bed Thermocline Storage Tank Employing in CSP Plants
,”
Renew. Energy
,
172
(
7
), pp.
1417
1432
.
42.
Elfeky
,
K. E.
,
Mohammed
,
A. G.
,
Ahmed
,
N.
,
Lu
,
L.
, and
Wang
,
Q.
,
2020
, “
Thermal and Economic Evaluation of Phase Change Material Volume Fraction for Thermocline Tank Used in Concentrating Solar Power Plants
,”
Appl. Energy
,
267
, p.
115054
.
43.
Bellan
,
S.
,
Alam
,
T. E.
,
González-Aguilar
,
J.
,
Romero
,
M.
,
Rahman
,
M. M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2015
, “
Numerical and Experimental Studies on Heat Transfer Characteristics of Thermal Energy Storage System Packed With Molten Salt PCM Capsules
,”
Appl. Therm. Eng.
,
90
(
11
), pp.
970
979
.
44.
Jegadheeswaran
,
S.
,
Pohekar
,
S. D.
, and
Kousksou
,
T.
,
2010
, “
Exergy Based Performance Evaluation of Latent Heat Thermal Storage System: A Review
,”
Renew. Sustain. Energy Rev.
,
14
(
9
), pp.
2580
2595
.
You do not currently have access to this content.