Abstract

Biomass gasification in CO2 is a promising thermochemical pathway to assist with growing issues of CO2 in the environment. However, high reaction temperature requirement and the low reaction rate is limiting its development. To resolve these issues, the effect of acid and alkali pretreatment on the pyrolysis and CO2 gasification of pinewood was examined using a semi-batch reactor. The temporal behavior of syngas components, energy, and their yield, and energy efficiency was quantified. Results showed that the decreased alkali and alkaline earth metal (AAEM) content using acid pretreatment was beneficial for the CO and syngas yield, while the effect of the increased AAEM content using alkali pretreatment provided a converse trend. In contrast, CO2-assisted gasification of alkali-pretreated biomass improved the CO and syngas yield due to the catalytic influence of AAEM on the Boudouard reaction, while the acid-washed biomass yielded the lowest syngas yield. During gasification, the syngas yield, energy yield, and overall energy efficiency were enhanced by 83.4 (by wt%), 44.6 (by wt%), and 44.6%, respectively, using alkali pretreatment. The results revealed that alkali pretreatment is an effective catalytic incorporation pathway to improve the syngas, energy output, and reactivity to CO2 gasification.

References

1.
Al-Rahbi
,
A. S.
, and
Williams
,
P. T.
,
2017
, “
Hydrogen-Rich Syngas Production and Tar Removal From Biomass Gasification Using Sacrificial Tyre Pyrolysis Char
,”
Appl. Energy
,
190
(
3
), pp.
501
509
.
2.
Long
,
J.
,
Song
,
H.
,
Jun
,
X.
,
Sheng
,
S.
,
Lun-shi
,
S.
,
Kai
,
X.
, and
Yao
,
Y.
,
2012
, “
Release Characteristics of Alkali and Alkaline Earth Metallic Species During Biomass Pyrolysis and Steam Gasification Process
,”
Bioresour. Technol.
,
116
(
7
), pp.
278
284
.
3.
Zhang
,
L.
,
Xu
,
C. C.
, and
Champagne
,
P.
,
2010
, “
Overview of Recent Advances in Thermo-Chemical Conversion of Biomass
,”
Energy Convers. Manage.
,
51
(
5
), pp.
969
982
.
4.
Kırtay
,
E.
,
2011
, “
Recent Advances in Production of Hydrogen From Biomass
,”
Energy Convers. Manage.
,
52
(
4
), pp.
1778
1789
.
5.
Senneca
,
O.
,
2007
, “
Kinetics of Pyrolysis, Combustion and Gasification of Three Biomass Fuels
,”
Fuel Process. Technol.
,
88
(
1
), pp.
87
97
.
6.
Déparrois
,
N.
,
Singh
,
P.
,
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2019
, “
Syngas Production From Co-Pyrolysis and Co-Gasification of Polystyrene and Paper With CO2
,”
Appl. Energy
,
246
(
1
), pp.
1
10
.
7.
Balat
,
M.
,
Balat
,
M.
,
Kırtay
,
E.
, and
Balat
,
H.
,
2009
, “
Main Routes for the Thermo-Conversion of Biomass Into Fuels and Chemicals. Part 2: Gasification Systems
,”
Energy Convers. Manage.
,
50
(
12
), pp.
3158
3168
.
8.
Gomaa
,
M. R.
,
Mustafa
,
R. J.
, and
Al-Dmour
,
N.
,
2020
, “
Solar Thermochemical Conversion of Carbonaceous Materials Into Syngas by Co-Gasification
,”
J. Cleaner Prod.
,
248
(
1
), p.
119185
.
9.
Ren
,
S.
,
Lei
,
H.
,
Wang
,
L.
,
Bu
,
Q.
,
Chen
,
S.
,
Wu
,
J.
,
Julson
,
J.
, and
Ruan
,
R.
,
2013
, “
The Effects of Torrefaction on Compositions of Bio-Oil and Syngas From Biomass Pyrolysis by Microwave Heating
,”
Bioresour. Technol.
,
135
(
5
), pp.
659
664
.
10.
Ahmed
,
I.
,
Jangsawang
,
W.
, and
Gupta
,
A. K.
,
2012
, “
Energy Recovery From Pyrolysis and Gasification of Mangrove
,”
Appl. Energy
,
91
(
1
), pp.
173
179
.
11.
Iwaki
,
H.
,
Ye
,
S.
,
Katagiri
,
H.
, and
Kitagawa
,
K.
,
2004
, “
Wastepaper Gasification With CO2 or Steam Using Catalysts of Molten Carbonates
,”
Appl. Catal. A: Gen.
,
270
(
1–2
), pp.
237
243
.
12.
Ahmed
,
I.
, and
Gupta
,
A. K.
,
2009
, “
Syngas Yield During Pyrolysis and Steam Gasification of Paper
,”
Appl. Energy
,
86
(
9
), pp.
1813
1821
.
13.
Mohan
,
D.
,
Pittman
,
C. U.
, and
Steele
,
P. H.
,
2006
, “
Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review
,”
Energy Fuels
,
20
(
3
), pp.
848
889
.
14.
Cheng
,
Y.
,
Thow
,
Z.
, and
Wang
,
C.
,
2016
, “
Biomass Gasification With CO2 in a Fluidized Bed
,”
Powder Technol.
,
296
(
1
), pp.
87
101
.
15.
Adnan
,
M. A.
, and
Hossain
,
M. M.
,
2018
, “
Gasification of Various Biomasses Including Microalgae Using CO2-A Thermodynamic Study
,”
Renewable Energy
,
119
(
4
), pp.
598
607
.
16.
Xu
,
T.
,
Pisupati
,
S. V.
, and
Bhattacharya
,
S.
,
2019
, “
Comparison of Entrained Flow CO2 Gasification Behaviour of Three Low-Rank Coals-Victorian Brown Coal, Beulah Lignite, and Inner Mongolia Lignite
,”
Fuel
,
249
(
8
), pp.
206
218
.
17.
Ahmed
,
I.
, and
Gupta
,
A. K.
,
2009
, “
Characteristics of Cardboard and Paper Gasification With CO2
,”
Appl. Energy
,
86
(
12
), pp.
2626
2634
.
18.
Bulushev
,
D. A.
, and
Ross
,
J. R. H.
,
2011
, “
Catalysis for Conversion of Biomass to Fuels via Pyrolysis and Gasification: A Review
,”
Catal. Today
,
171
(
1
), pp.
1
13
.
19.
Hurley
,
S.
,
Li
,
H.
, and
Xu
,
C. C.
,
2010
, “
Effects of Impregnated Metal Ions on Air/CO2-Gasification of Woody Biomass
,”
Bioresour. Technol.
,
101
(
23
), pp.
9301
9307
.
20.
Zhang
,
S.
,
Asadullah
,
M.
,
Dong
,
L.
,
Tay
,
H.
, and
Li
,
C.
,
2013
, “
An Advanced Biomass Gasification Technology With Integrated Catalytic Hot Gas Cleaning. Part II: Tar Reforming Using Char as a Catalyst or as a Catalyst Support
,”
Fuel
,
112
(
10
), pp.
646
653
.
21.
Lahijani
,
P.
,
Mohammadi
,
M.
, and
Mohamed
,
A. R.
,
2019
, “
Investigation of Synergism and Kinetic Analysis During CO2 Co-Gasification of Scrap Tire Char and Agro-Wastes
,”
Renewable Energy
,
142
(
1
), pp.
147
157
.
22.
Huang
,
Y.
,
Yin
,
X.
,
Wu
,
C.
,
Wang
,
C.
,
Xie
,
J.
,
Zhou
,
Z.
,
Ma
,
L.
, and
Li
,
H.
,
2009
, “
Effects of Metal Catalysts on CO2 Gasification Reactivity of Biomass Char
,”
Biotechnol. Adv.
,
27
(
5
), pp.
568
572
.
23.
Carvalho
,
L.
,
Furusjö
,
E.
,
Kirtania
,
K.
,
Wetterlund
,
E.
,
Lundgren
,
J.
,
Anheden
,
M.
, and
Wolf
,
J.
,
2017
, “
Techno-Economic Assessment of Catalytic Gasification of Biomass Powders for Methanol Production
,”
Bioresour. Technol.
,
237
(
8
), pp.
167
177
.
24.
Choi
,
Y.
,
Cho
,
M.
, and
Kim
,
J.
,
2015
, “
Steam/Oxygen Gasification of Dried Sewage Sludge in a Two-Stage Gasifier: Effects of the Steam to Fuel Ratio and Ash of the Activated Carbon on the Production of Hydrogen and Tar Removal
,”
Energy
,
91
(
11
), pp.
160
167
.
25.
Wang
,
Z.
,
Burra
,
K. G.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2019
, “
Co-Gasification Characteristics of Waste Tire and Pine Bark Mixtures in CO2 Atmosphere
,”
Fuel
,
257
(
12
), p.
116025
.
26.
Ahmed
,
I. I.
, and
Gupta
,
A. K.
,
2011
, “
Particle Size, Porosity and Temperature Effects on Char Conversion
,”
Appl. Energy
,
88
(
12
), pp.
4667
4677
.
27.
Nowakowski
,
D. J.
, and
Jones
,
J. M.
,
2008
, “
Uncatalysed and Potassium-Catalysed Pyrolysis of the Cell-Wall Constituents of Biomass and Their Model Compounds
,”
J. Anal Appl. Pyrolysis
,
83
(
1
), pp.
12
25
.
28.
Cen
,
K.
,
Cao
,
X.
,
Chen
,
D.
,
Zhou
,
J.
,
Chen
,
F.
, and
Li
,
M.
,
2020
, “
Leaching of Alkali and Alkaline Earth Metallic Species (AAEMs) With Phenolic Substances in Bio-Oil and Its Effect on Pyrolysis Characteristics of Moso Bamboo
,”
Fuel Process. Technol.
,
200
(
1
), p.
106332
.
29.
Chen
,
D.
,
Cen
,
K.
,
Jing
,
X.
,
Gao
,
J.
,
Li
,
C.
, and
Ma
,
Z.
,
2017
, “
An Approach for Upgrading Biomass and Pyrolysis Product Quality Using a Combination of Aqueous Phase Bio-Oil Washing and Torrefaction Pretreatment
,”
Bioresour. Technol.
,
233
, pp.
150
158
.
30.
Ahmed
,
I. I.
, and
Gupta
,
A. K.
,
2010
, “
Pyrolysis and Gasification of Food Waste: Syngas Characteristics and Char Gasification Kinetics
,”
Appl. Energy
,
87
(
1
), pp.
101
108
.
31.
Wang
,
S.
,
Dai
,
G.
,
Yang
,
H.
, and
Luo
,
Z.
,
2017
, “
Lignocellulosic Biomass Pyrolysis Mechanism: A State-of-the-Art Review
,”
Prog. Energy Combust.
,
62
(
1
), pp.
33
86
.
32.
Yang
,
H.
,
Huan
,
B.
,
Chen
,
Y.
,
Gao
,
Y.
,
Li
,
J.
, and
Chen
,
H.
,
2016
, “
Biomass-Based Pyrolytic Polygeneration System for Bamboo Industry Waste: Evolution of the Char Structure and the Pyrolysis Mechanism
,”
Energy Fuels
,
30
(
8
), pp.
6430
6439
.
33.
Kan
,
T.
,
Strezov
,
V.
, and
Evans
,
T. J.
,
2016
, “
Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
1126
1140
.
34.
Sonoyama
,
N.
,
Okuno
,
T.
,
Mašek
,
O.
,
Hosokai
,
S.
,
Li
,
C.
, and
Hayashi
,
J.
,
2006
, “
Interparticle Desorption and Re-Adsorption of Alkali and Alkaline Earth Metallic Species Within a Bed of Pyrolyzing Char From Pulverized Woody Biomass
,”
Energy Fuels
,
20
(
3
), pp.
1294
1297
.
35.
Li
,
X.
, and
Li
,
C. Z.
,
2006
, “
Volatilisation and Catalytic Effects of Alkali and Alkaline Earth Metallic Species During the Pyrolysis and Gasification of Victorian Brown Coal. Part VIII. Catalysis and Changes in Char Structure During Gasification in Steam
,”
Fuel
,
85
(
10–11
), pp.
1518
1525
.
36.
Li
,
X.
,
Wu
,
H.
,
Hayashi
,
J.
, and
Li
,
C. Z.
,
2002
, “
Volatilisation and Catalytic Effects of Alkali and Alkaline Earth Metallic Species During the Pyrolysis and Gasification of Victorian Brown Coal. Part VI. Further Investigation Into the Effects of Volatile-Char Interactions
,”
Fuel
,
81
(
2
), pp.
143
149
.
37.
Li
,
C. Z.
,
Sathe
,
C.
,
Kershaw
,
J. R.
, and
Pang
,
Y.
,
2000
, “
Fates and Roles of Alkali and Alkaline Earth Metals During the Pyrolysis of a Victorian Brown Coal
,”
Fuel
,
79
(
3–4
), pp.
427
438
.
38.
Wu
,
H.
,
Hayashi
,
J.
,
Chiba
,
T.
,
Takarada
,
T.
, and
Li
,
C.
,
2004
, “
Volatilisation and Catalytic Effects of Alkali and Alkaline Earth Metallic Species During the Pyrolysis and Gasification of Victorian Brown Coal. Part V. Combined Effects of Na Concentration and Char Structure on Char Reactivity
,”
Fuel
,
83
(
1
), pp.
23
30
.
39.
Feng
,
D.
,
Zhao
,
Y.
,
Zhang
,
Y.
,
Xu
,
H.
,
Zhang
,
L.
, and
Sun
,
S.
,
2018
, “
Catalytic Mechanism of Ion-Exchanging Alkali and Alkaline Earth Metallic Species on Biochar Reactivity During CO2/H2O Gasification
,”
Fuel
,
212
, pp.
523
532
.
40.
Zhang
,
S.
,
Min
,
Z.
,
Tay
,
H.
,
Asadullah
,
M.
, and
Li
,
C.
,
2011
, “
Effects of Volatile–Char Interactions on the Evolution of Char Structure During the Gasification of Victorian Brown Coal in Steam
,”
Fuel
,
90
(
4
), pp.
1529
1535
.
41.
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2018
, “
Synergistic Effects in Steam Gasification of Combined Biomass and Plastic Waste Mixtures
,”
Appl. Energy
,
211
, pp.
230
236
.
42.
Uddin
,
M. N.
,
Daud
,
W. M. A. W.
, and
Abbas
,
H. F.
,
2014
, “
Effects of Pyrolysis Parameters on Hydrogen Formations From Biomass: A Review
,”
RSC Adv.
,
4
(
21
), p.
10467
.
43.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
, and
Gupta
,
A. K.
,
2021
, “
Effect of Alkali and Alkaline Metals on Gas Formation Behavior and Kinetics During Pyrolysis of Pine Wood
,”
Fuel
,
290
, p.
120081
.
44.
Policella
,
M.
,
Wang
,
Z.
,
Burra
,
K. G.
, and
Gupta
,
A. K.
,
2019
, “
Characteristics of Syngas From Pyrolysis and CO2-Assisted Gasification of Waste Tires
,”
Appl. Energy
,
254
(
1
), p.
113678
.
45.
Singh
,
P.
,
Déparrois
,
N.
,
Burra
,
K. G.
,
Bhattacharya
,
S.
, and
Gupta
,
A. K.
,
2019
, “
Energy Recovery From Cross-Linked Polyethylene Wastes Using Pyrolysis and CO2 Assisted Gasification
,”
Appl. Energy
,
254
(
1
), p.
113722
.
46.
Li
,
J.
,
Burra
,
K. G.
,
Wang
,
Z.
,
Liu
,
X.
,
Kerdsuwan
,
S.
, and
Gupta
,
A. K.
,
2021
, “
Energy Recovery From Composite Acetate Polymer-Biomass Wastes via Pyrolysis and CO2-Assisted Gasification
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042305
.
47.
Matas Güell
,
B.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2013
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.
48.
Liu
,
X.
,
Burra
,
K. R. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2021
, “
Influence of Char Intermediates on Synergistic Effects During Co-Pyrolysis of Pinewood and Polycarbonate
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052107
.
49.
Liu
,
X.
,
Burra
,
K. R. G.
,
Wang
,
Z.
,
Li
,
J.
,
Che
,
D.
, and
Gupta
,
A. K.
,
2021
, “
Syngas Characteristics From Catalytic Gasification of Polystyrene and Pinewood in CO2 Atmosphere
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052304
.
50.
Davies
,
A.
,
Soheilian
,
R.
,
Zhuo
,
C.
, and
Levendis
,
Y. A.
,
2014
, “
Pyrolytic Conversion of Biomass Residues to Gaseous Fuels for Electricity Generation
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021101
.
You do not currently have access to this content.