Abstract

Synergy often occurs between coal and biomass during co-utilization, and the combustion reactivity and combustion properties of coal are affected mainly due to high volatile matter in biomass. However, it is not clear that a synergistic interaction will be encountered if coal is processed with biochar that contains a limited amount of volatiles due to charring process. In this article, the existence of synergy was questioned based on the thermal analysis data obtained from the co-combustion of several biochars and lignite. The biochars produced at 400 °C from lignocellulosic biomasses such as Fraxinus (FR—ash tree), Populus hybrids (PO—hybrid poplar), and Rhododendron (RH) were blended with Turkish lignite (Adıyaman-Golbasi) to form blends that contain 5–15% biochars. These blends were burned in a thermogravimetric analyzer, and the combustion characteristics of the blends were evaluated, considering the criteria that include the reactivity and combustion performance indices including ignition index, comprehensive combustion index, burnout performance index, combustion stability indices, and rate and intensity index. Also, synergy indices such as synergy indicator, synergy factor, and interaction coefficient were calculated to identify the presence and intensity of synergy. It was concluded that depending on the type of biochar and the addition rate, changes occurred in the combustion properties of the coal, which can sometimes be considered as additive behavior and sometimes as a synergistic interaction. The presence of 5% or 10% PO biochar in the blends resulted in very obvious synergies in combustion characteristics according to all eight criteria considered.

References

1.
Wood
,
L. S.
,
2012
,
A More Perfect Union
,
Oxford University Press
,
New York
.
2.
Mosqueda
,
A.
,
Wei
,
J.
,
Medrano
,
K.
,
Gonzales
,
H.
,
Ding
,
L.
,
Yu
,
G.
, and
Yoshikawa
,
K.
,
2019
, “
Co-gasification Reactivity and Synergy of Banana Residue Hydrochar and Anthracite Coal Blends
,”
Appl. Energy
,
250
, pp.
92
97
.
3.
Shi
,
K.
,
Oladejo
,
J. M.
,
Yan
,
J.
, and
Wu
,
T.
,
2019
, “
Investigation on the Interactions Among Lignocellulosic Constituents and Minerals of Biomass and Their Influences on Co-firing
,”
Energy
,
179
, pp.
129
137
.
4.
Qu
,
X.
,
Zhou
,
G.
,
Cao
,
Y.
,
Li
,
P.
,
He
,
Y.
, and
Zhang
,
J.
,
2019
, “
Synergetic Effect on the Combustion of Lignite Blended With Humus: Thermochemical Characterization and Kinetics
,”
Appl. Therm. Eng.
,
152
, pp.
137
146
.
5.
Liu
,
Z.
,
Hu
,
W.
,
Jiang
,
Z.
,
Mi
,
B.
, and
Fei
,
B.
,
2016
, “
Investigating Combustion Behaviors of Bamboo, Torrefied Bamboo, Coal and Their Respective Blends by Thermogravimetric Analysis
,”
Renew. Energy
,
87
, pp.
346
352
.
6.
Kazagic
,
A.
, and
Smajevic
,
I.
,
2009
, “
Synergy Effects of Co-firing Wooden Biomass With Bosnian Coal
,”
Energy
,
34
(
5
), pp.
699
707
.
7.
Wang
,
Z. W.
,
Li
,
J. H.
,
Burra
,
K. G.
,
Liu
,
X.
,
Li
,
X. Q.
,
Zhang
,
M. J.
,
Lei
,
T. Z.
, and
Gupta
,
A. K.
,
2021
, “
Synergetic Effect on CO2-Assisted co-Gasification of Biomass and Plastics
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031901
.
8.
Liu
,
X.
,
Burra
,
K. R. G.
,
Wang
,
Z. W.
,
Li
,
J. H.
,
Che
,
D. F.
, and
Gupta
,
A. K.
,
2021
, “
Influence of Char Intermediates on Synergistic Effects During Co-pyrolysis of Pinewood and Polycarbonate
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052107
.
9.
Kubacki
,
M. L.
,
Ross
,
A. B.
,
Jones
,
J. M.
, and
Williams
,
A.
,
2012
, “
Small-Scale Co-utilisation of Coal and Biomass
,”
Fuel
,
101
, pp.
84
89
.
10.
Haykiri-Acma
,
H.
,
Yaman
,
S.
, and
Kucukbayrak
,
S.
,
2015
, “
Does Carbonization Avoid Segregation of Biomass and Lignite During Co-Firing? Thermal Analysis Study
,”
Fuel Process. Technol.
,
137
, pp.
312
319
.
11.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2009
, “
Effect of Biomass on Burnouts of Turkish Lignites During Co-Firing
,”
Energy Convers. Manage.
,
50
(
9
), pp.
2422
2427
.
12.
Yang
,
Y.
,
Lu
,
X.
, and
Wang
,
Q.
,
2017
, “
Investigation on the Co-Combustion of Low Calorific Oil Shale and Its Semi-Coke by Using Thermogravimetric Analysis
,”
Energy Convers. Manage.
,
136
, pp.
99
107
.
13.
Oladejo
,
J.
,
Adegbite
,
S.
,
Gao
,
X.
,
Liu
,
H.
, and
Wu
,
T.
,
2018
, “
Catalytic and Non-Catalytic Synergistic Effects and Their Individual Contributions to Improved Combustion Performance of Coal/Biomass Blends
,”
Appl. Energy
,
211
, pp.
334
345
.
14.
Hu
,
J.
,
Shao
,
J.
,
Yang
,
H.
,
Lin
,
G.
,
Chen
,
Y.
,
Wang
,
X.
,
Zhang
,
W.
, and
Chen
,
H.
,
2017
, “
Co-Gasification of Coal and Biomass: Synergy, Characterization and Reactivity of the Residual Char
,”
Bioresour Technol
,
244
, pp.
1
7
.
15.
Boumanchar
,
I.
,
Chhiti
,
Y.
,
Alaoui
,
F.
,
Elkhouakhi
,
M.
,
Sahibed-Dine
,
A.
,
Bentiss
,
F.
,
Jama
,
C.
, and
Bensitel
,
M.
,
2019
, “
Investigation of (Co)-Combustion Kinetics of Biomass, Coal and Municipal Solid Wastes
,”
Waste Manage.
,
97
, pp.
10
18
.
16.
Barbanera
,
M.
,
Cotana
,
F.
, and
Di Matteo
,
U.
,
2018
, “
Co-combustion Performance and Kinetic Study of Solid Digestate With Gasification Biochar
,”
Renew. Energy
,
121
, pp.
597
605
.
17.
Oladejo
,
J.
,
Shi
,
K.
,
Meng
,
Y.
,
Adegbite
,
S.
, and
Wu
,
T.
,
2019
, “
Biomass Constituents’ Interactions With Coal During Cofiring
,”
Energy Procedia
,
158
, pp.
1640
1645
.
18.
Yilgin
,
M.
,
Hos
,
B.
, and
Pehlivan
,
D.
,
2021
, “
Combustion of Torrefied Pellets of Furniture Work Dusts as Blends With Lignite
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102301
.
19.
Zhang
,
Y.
,
Geng
,
P.
, and
Liu
,
R.
,
2017
, “
Synergistic Combination of Biomass Torrefaction and Co-Gasification: Reactivity Studies
,”
Bioresour Technol
,
245
, pp.
225
233
.
20.
Junga
,
R.
,
Knauer
,
W.
,
Niemiec
,
P.
, and
Tanczuk
,
M.
,
2017
, “
Experimental Tests of Co-combustion of Laying Hens Manure With Coal by Using Thermogravimetric Analysis
,”
Renew Energy
,
111
, pp.
245
255
.
21.
Kumar
,
P.
,
Subbarao
,
P. M. V.
,
Kala
,
L. D.
, and
Vijay
,
V. K.
,
2021
, “
Thermogravimetric Devolatilization Behavior of Agricultural Residue for Generation of Syngas
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
112106
.
22.
Burra
,
K. G.
,
Daristotle
,
N.
, and
Gupta
,
A. K.
,
2021
, “
Carbonization of Cellulose in Supercritical CO2 for Value-Added Carbon
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
072105
.
23.
Kerdsuwan
,
S.
,
Laohalidanond
,
K.
, and
Ashwani
,
K. G.
,
2021
, “
Upgrading Refuse-Derived Fuel Properties From Reclaimed Landfill Using Torrefaction
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
021302
.
24.
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2007
, “
Interpretation of Biomass Gasification Yields Regarding Temperature Intervals Under Nitrogen-Steam Atmosphere
,”
Fuel Process. Technol.
,
88
(
4
), pp.
417
425
.
25.
Volpe
,
M.
,
Panno
,
D.
,
Volpe
,
R.
, and
Messineo
,
A.
,
2015
, “
Upgrade of Citrus Waste as a Biofuel via Slow Pyrolysis
,”
J. Anal. Appl. Pyrolysis
,
115
, pp.
66
76
.
26.
Xu
,
M.
, and
Sheng
,
C.
,
2012
, “
Influences of the Heat-Treatment Temperature and Inorganic Matter on Combustion Characteristics of Cornstalk Biochars
,”
Energy Fuels
,
26
(
1
), pp.
209
218
.
27.
Du
,
S. W.
,
Chen
,
W. H.
, and
Lucas
,
J. A.
,
2014
, “
Pretreatment of Biomass by Torrefaction and Carbonization for Coal Blend Used in Pulverized Coal Injection
,”
Bioresource Technol.
,
161
, pp.
333
339
.
28.
Kastanaki
,
E.
, and
Vamvuka
,
D.
,
2006
, “
A Comparative Reactivity and Kinetic Study on the Combustion of Coal–Biomass Char Blends
,”
Fuel
,
85
(
9
), pp.
1186
1193
.
29.
Anupam
,
K.
,
Sharma
,
A. K.
,
Lal
,
P. S.
,
Dutta
,
S.
, and
Maity
,
S.
,
2016
, “
Preparation, Characterization and Optimization for Upgrading Leucaena Leucocephala Bark to Biochar Fuel With High Energy Yielding
,”
Energy
,
106
, pp.
743
756
.
30.
Aich
,
S.
,
Nandi
,
B. K.
, and
Bhattacharya
,
S.
,
2019
, “
Utilization of Sal Leaves and Sal Leaves Char to Improve the Combustion Performance of Reject Coal
,”
Energy Sources, Part A
,
41
(
19
), pp.
2299
2312
.
31.
Naidu
,
V. S.
,
Aghalayam
,
P.
, and
Jayanti
,
S.
,
2016
, “
Synergetic and Inhibition Effects in Carbon Dioxide Gasification of Blends of Coals and Biomass Fuels of Indian Origin
,”
Bioresour. Technol.
,
209
, pp.
157
165
.
32.
Mureddu
,
M.
,
Dessi
,
F.
,
Orsini
,
A.
,
Ferrara
,
F.
, and
Pettinau
,
A.
,
2018
, “
Air- and Oxygen-Blown Characterization of Coal and Biomass by Thermogravimetric Analysis
,”
Fuel
,
212
, pp.
626
637
.
33.
Ma
,
Q.
,
Han
,
L.
, and
Huang
,
G.
,
2017
, “
Evaluation of Different Water-Washing Treatments Effects on Wheat Straw Combustion Properties
,”
Bioresour. Technol.
,
245
, pp.
1075
1083
.
34.
Wang
,
Z.
,
Hong
,
C.
,
Xing
,
Y.
,
Li
,
Y.
,
Feng
,
L.
, and
Jia
,
M.
,
2018
, “
Combustion Behaviors and Kinetics of Sewage Sludge Blended With Pulverized Coal: With and Without Catalysts
,”
Waste Manage.
,
74
, pp.
288
296
.
35.
Kumar
,
R.
, and
Singh
,
R. I.
,
2017
, “
An Investigation of Co-Combustion Municipal Sewage Sludge With Biomass in a 20 kW BFB Combustor Under Air-Fired and Oxygen-Enriched Condition
,”
Waste Manage.
,
70
, pp.
114
126
.
36.
Niu
,
S.
,
Chen
,
M.
,
Li
,
Y.
, and
Xue
,
F.
,
2016
, “
Evaluation on the Oxy-Fuel Combustion Behavior of Dried Sewage Sludge
,”
Fuel
,
178
, pp.
129
138
.
37.
Oladejo
,
J.
,
Adegbite
,
S.
,
Pang
,
C.
,
Liu
,
H.
,
Parvez
,
A.
, and
Wu
,
T.
,
2017
, “
A Novel Index for the Study of Synergistic Effects During the Co-Processing of Coal and Biomass
,”
Appl. Energy
,
188
, pp.
215
225
.
38.
Qin
,
H.
,
Wang
,
W.
,
Liu
,
H.
,
Zhang
,
L.
,
Wang
,
Q.
,
Shi
,
C.
, and
Yao
,
K.
,
2017
, “
Thermal Behavior Research for Co-Combustion of Furfural Residue and Oil Shale Semi-Coke
,”
Appl. Therm. Eng.
,
120
, pp.
19
25
.
39.
Karayigit
,
A. I.
,
Oskay
,
G.
,
Tuncer
,
A.
,
Mastalerz
,
M.
,
A.Gümüş
,
B.
,
Şengüler
,
I.
,
Yaradılmış
,
H.
, and
Tunoğlu
,
C.
,
2016
, “
A Multi-Disciplinary Study of the Golbasi-Harmanli Coal Seam, SE Turkey
,”
Int. J. Coal Geol.
,
167
, pp.
31
47
.
40.
Haykiri Acma
,
H.
,
Yaman
,
S.
,
Alkan
,
M.
, and
Kucukbayrak
,
S.
,
2014
, “
Mineralogical Characterization of Chemically Isolated Ingredients From Biomass
,”
Energy Convers. Manage.
,
77
, pp.
221
226
.
41.
Wise
,
L. E.
,
Murphy
,
M.
, and
D’addiecs
,
A. A.
,
1946
, “
Chlorite Holocellulose, Its Fractionation and Bearing on Summative Wood Analysis and on Studies on the Hemicelluloses
,”
Pap. Trade J.
,
122
, pp.
11
19
.
42.
van Soest
,
P. J.
,
1963
, “
Use of Detergents in the Analysis of Fibrous Feeds. II A Rapid Method for the Determination of Fiber and Lignin
,”
J. Assoc. Off. Anal. Chem.
,
46
, pp.
829
835
.
43.
Liu
,
Y.
,
Cao
,
X.
,
Duan
,
X.
,
Wang
,
Y.
, and
Che
,
D.
,
2018
, “
Thermal Analysis on Combustion Characteristics of Predried Dyeing Sludge
,”
Appl. Therm. Eng.
,
140
, pp.
158
165
.
44.
Caliskan Sarikaya
,
A.
,
Haykiri Acma
,
H.
, and
Yaman
,
S.
,
2019
, “
Synergistic Interactions During Co-Combustion of Lignite, Biomass, and Their Chars
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122203
.
45.
Zhang
,
S. H.
,
Luo
,
H. H.
,
Chen
,
H. P.
,
Yang
,
H. P.
, and
Wang
,
X. H.
,
2009
, “Reburning Characteristics of Residual Carbon in Fly Ash From CFB Boilers,”
Proceedings of the 20th International Conference on Fluidized Bed Combustion
,
G.
Yue
,
H.
Zhang
,
C.
Zhao
, and
Z.
Luo
, eds.,
Springer
,
Xi’an China
, May 18–21, p.
1070
.
46.
Sieradzka
,
M.
,
Gao
,
N.
,
Quan
,
C.
,
Mlonka-Medrala
,
A.
, and
Magdziarz
,
A.
,
2020
, “
Biomass Thermochemical Conversion via Pyrolysis With Integrated CO2 Capture
,”
Energies
,
13
(
5
), p.
1050
.
47.
Perez-Jeldres
,
R.
,
Cornejo
,
P.
,
Flores
,
M.
,
Gordon
,
A.
, and
Garcia
,
X.
,
2017
, “
A Modeling Approach to Co-firing Biomass/Coal Blends in Pulverized Coal Utility Boilers: Synergistic Effects and Emission Profiles
,”
Energy
,
120
, pp.
663
674
.
48.
Folgueras
,
M. B.
,
Diaz
,
R. M.
,
Xiberta
,
J.
, and
Prieto
,
I.
,
2003
, “
Thermogravimetric Analysis of the Co-Combustion of Coal and Sewage Sludge
,”
Fuel
,
82
(
15–17
), pp.
2051
2055
.
49.
Sarkar
,
P.
,
Sahu
,
S. G.
,
Mukherjee
,
A.
,
Kumar
,
M.
,
Adak
,
A. K.
,
Chakraborty
,
N.
, and
Biswas
,
S.
,
2014
, “
Co-Combustion Studies for Potential Application of Sawdust or Its Low Temperature Char as Co-Fuel With Coal
,”
Appl. Therm. Eng.
,
63
(
2
), pp.
616
623
.
50.
Liu
,
H. P.
,
Liang
,
W. X.
,
Qin
,
H.
, and
Qing Wang
,
Q.
,
2016
, “
Synergy in Co-Combustion of Oil Shale Semi-Coke With Torrefied Cornstalk
,”
Appl. Therm. Eng.
,
109
, pp.
653
662
.
You do not currently have access to this content.