Abstract

The research work depicts the study of the comparison of a 1 kW fixed pitch vertical-axis wind turbine (VAWT) and a variable pitch VAWT via analytical, numerical, and experimental results. Being an emerging technology, wind turbine is becoming a source of attraction for the researchers. The VAWT in comparison to the horizontal-axis wind turbine (HAWT) has shown numerous benefits. The fundamental purpose of this study is to maximize the output power and output torque of the wind turbine. For achieving an improved output, a novel and unique mechanism, termed as pitching mechanism, is employed that follows the variable pitch concept. The mathematical modeling was performed for the straight blade variable pitch VAWT and for the fixed rotor. The four-bar mechanism was developed to execute the variable pitch mechanism and implemented in the form of the computer-aided design, model. A scaled down three-dimensional (3D) model of the rotor was manufactured using the 3D printing technique. The aerodynamic forces such as lift and drag were measured upon the rotor as per the testing on the rotor in the wind tunnel. Computational fluid dynamics (CFD) simulations were run for the fixed pitch and the variable pitch rotor. The transient analysis was performed for the azimuthal angle ranging from 0 to 360 deg and for a pitch angle varying from +25 to −25 deg in ansys software. The comparative study was undertaken, keeping in view the analytical, simulation, and experimental results. A worthy agreement was observed among analytical, software, and experimental results, and a promising increase in power and torque was observed due to the introduction of the variable pitch mechanism. The power produced by the variable pitch design showed a significant increase in the power production compared to the fixed pitch design. The numerical and experimental values of cp for the variable pitch design were quite comparable.

References

1.
Batista
,
N. C.
,
Melício
,
R.
,
Matias
,
J. C. O.
, and
Catalão
,
J. P. S.
,
2011
, “
Self-Start Performance Evaluation in Darrieus-Type Vertical Axis Wind Turbines: Methodology and Computational Tool Applied to Symmetrical Airfoils
,”
Renew. Energy Power Qual. J.
,
1
(
9
), pp.
250
255
.
2.
Ashwill
,
T. D.
, and
Leonard
,
T. M.
,
1986
, “
Developments in Blade Shape Design for a Darrieus Vertical Axis Wind Turbine
,” Technical Report, Sandia National Labs., Albuquerque, NM.
3.
Mohammed
,
A. A.
,
2019
, “
Vertical Axis Wind Turbine Aerodynamics : Summary and Review of Momentum Models
,” 141, pp.
1
10
.
4.
Persico
,
G.
,
Energia
,
D.
,
Battisti
,
L.
,
Anna
,
S. D.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2016
, “
An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment
,”
137
.
5.
Carlin
,
P. W.
,
Laxson
,
A. S.
, and
Muljadi
,
E. B.
,
2003
, “
The History and State of the Art of Variable-Speed Wind Turbine Technology
,”
Wind Energy
,
6
(
2
), pp.
129
159
.
6.
Eriksson
,
S.
,
Bernhoff
,
H.
, and
Leijon
,
M.
,
2008
, “
Evaluation of Different Turbine Concepts for Wind Power
,”
Renew. Sustain. Energy Rev.
,
12
(
5
), pp.
1419
1434
.
7.
De Tavernier
,
D.
,
Ferreira
,
C.
, and
van Bussel
,
G.
,
2019
, “
Airfoil Optimisation for Vertical-Axis Wind Turbines With Variable Pitch
,”
Wind Energy
,
22
(
4
), pp.
547
562
.
8.
Benchergui
,
D.
, and
Svoboda
,
C.
,
2012
, “
Aircraft Design
,”
Aerosp. Am.
,
50
(
11
), p.
28
.
9.
Yang
,
Y.
,
Guo
,
Z.
,
Song
,
Q.
,
Zhang
,
Y.
, and
Li
,
Q.
,
2018
, “
Effect of Blade Pitch Angle on the Aerodynamic Characteristics of a Straight-Bladed Vertical Axis Wind Turbine Based on Experiments and Simulations
,”
Energies
,
11
(
6
), pp.
1
15
.
10.
Gawad
,
A. F. A.
,
2013
, “
New, Simple Blade-Pitch Control Mechanism for Small-Size, Horizontal-Axis Wind Turbines
,”
J. Energy Power Eng.
,
7
(
12
), pp.
1
12
.
11.
Zhao
,
Z.
,
Wang
,
R.
,
Shen
,
W.
,
Wang
,
T.
,
Xu
,
B.
,
Zheng
,
Y.
, and
Qian
,
S.
,
2018
, “
Variable Pitch Approach for Performance Improving of Straight-Bladed VAWT at Rated Tip Speed Ratio
,”
Appl. Sci.
,
8
(
6
), p.
957
.
12.
Mclean
,
D.
, and
Mclean
,
D.
,
2017
, “
Development of the Dual-Vertical-Axis Wind Turbine with Active Blade Pitch Control
.”
13.
Roy
,
P.
,
2016
, “
An Overview of Aerodynamic Behaviour of Wind Turbine Blade
,” pp.
1
8
.
14.
Dela Salle
,
S. A.
,
Reardon
,
D.
,
Leithead
,
W. E.
, and
Grimble
,
M. J.
,
1990
, “
Review of Wind Turbine Control
,”
Int. J. Control
,
52
(
6
), pp.
1295
1310
.
15.
Trancossi
,
M.
,
2014
, “
Imece2014-38966 Wind Energy Production Using an Optimized Variable Pitch Vertical
,” pp.
1
8
.
16.
Paraschivoiu
,
I.
,
Trifu
,
O.
, and
Saeed
,
F.
,
2009
, “
H-Darrieus Wind Turbine With Blade Pitch Control
,”
Int. J. Rotating Mach.
,
2009
, pp.
1
7
.
17.
Musyafa
,
A.
,
Fisika
,
J. T.
,
Noriyati
,
R. D.
, and
Fisika
,
J. T.
,
2012
, “
Implementataion of Pitch Angle Wind Turbine Posision
,”
3
(
1
), pp.
510
518
.
18.
Abdin
,
Z.
,
Alim
,
M. A.
,
Khairul
,
M. A.
, and
Rahman
,
M. M.
,
2012
, “
Effect of Blade Pitch Angle on the Performance of a Wind Turbine
,”
Eng. e-Trans.
,
7
(
2
), pp.
135
138
.
19.
Guntur
,
S.
, and
Sørensen
,
N. N.
,
2014
, “
An Evaluation of Several Methods of Determining the Local Angle of Attack on Wind Turbine Blades
,”
J. Phys. Conf. Ser.
,
555
(
1
), pp.
1
11
.
20.
Kirke
,
B. K.
, and
Paillard
,
B.
,
2017
, “
Predicted and Measured Performance of a Vertical Axis Wind Turbine With Passive Variable Pitch Compared to Fixed Pitch
,”
Wind Eng.
,
41
(
1
), pp.
74
90
.
21.
Hu
,
H.
,
Zhang
,
M.
, and
Liu
,
Y.
,
2019
,
Auxetic Text
,
Woodhead Publishing
, Cambridge, UK, pp.
337
350
.
22.
Zanforlin
,
S.
, and
Deluca
,
S.
,
2018
, “
Effects of the Reynolds Number and the Tip Losses on the Optimal Aspect Ratio of Straight-Bladed Vertical Axis Wind Turbines
,”
Energy
,
148
, pp.
179
195
.
23.
Delafin
,
P. L.
,
Nishino
,
T.
,
Wang
,
L.
, and
Kolios
,
A.
,
2016
, “
Effect of the Number of Blades and Solidity on the Performance of a Vertical Axis Wind Turbine
,”
J. Phys. Conf. Ser.
,
753
(
2
), pp.
1
8
.
24.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2018
, “
Towards Optimal Aerodynamic Design of Vertical Axis Wind Turbines: Impact of Solidity and Number of Blades
,”
Energy
,
165
, pp.
1129
1148
.
25.
Fedak
,
W.
,
Anweiler
,
S.
,
Gancarski
,
W.
, and
Ulbrich
,
R.
,
2017
, “
Determination of the Number of Vertical Axis Wind Turbine Blades Based on Power Spectrum
,”
E3S Web Conference
,
Polanica-Zdrój, Poland
,
Sept. 13–15
, p.
19
.
26.
Mao
,
Z.
,
Tian
,
W.
, and
Yan
,
S.
,
2016
, “
Influence Analysis of Blade Chord Length on the Performance of a Four-Bladed Wollongong Wind Turbine
,”
J. Renew. Sustain. Energy
,
8
(
2
), pp.
1
12
.
27.
Kiwata
,
T.
,
Yamada
,
T.
,
Kita
,
T.
,
Takata
,
S.
,
Komatsu
,
N.
, and
Kimura
,
S.
,
2010
, “
Performance of a Vertical Axis Wind Turbine With Variable-Pitch Straight Blades Utilizing a Linkage Mechanism
,”
J. Environ. Eng.
,
5
(
1
), pp.
213
225
.
28.
Jamal
,
M. A.
, and
Shah
,
O. R.
,
2020
, “
Performance Evaluation of a 1 KW Variable Pitch-Straight Blade Vertical Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121304
.
29.
Li
,
C.
,
Xiao
,
Y.
,
Xu
,
Y.
,
Peng
,
Y.
,
Hu
,
G.
, and
Zhu
,
S.
,
2018
, “
Optimization of Blade Pitch in H-Rotor Vertical Axis Wind Turbines Through Computational Fluid Dynamics Simulations
,”
Appl. Energy
,
212
, pp.
1107
1125
.
30.
El-Samanoudy
,
M.
,
Ghorab
,
A. A. E.
, and
Youssef
,
S. Z.
,
2010
, “
Effect of Some Design Parameters on the Performance of a Giromill Vertical Axis Wind Turbine
,”
Ain Shams Eng. J.
,
1
(
1
), pp.
85
95
.
31.
Tenguria
,
N.
,
Mittal
,
N. D.
, and
Ahmed
,
S.
,
2011
, “
Evaluation of Performance of Horizontal Axis Wind Turbine Blades Based on Optimal Rotor Theory
,”
J. Urban Environ. Eng.
,
5
(
1
), pp.
15
23
.
32.
Airfoil Tools
, “
NACA 2412 (Naca2412-Il)
,” http://airfoiltools.com/airfoil/details?airfoil=naca2412-il, Accessed January 6, 2020.
33.
Ceyhan
,
Ö
,
2012
, “
Towards 20MW Wind Turbine: High Reynolds Number Effects on Rotor Design
,”
50th AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition
,
Nashville, TN
, pp.
9
12
.
34.
Manuel
,
D. S.
,
Jerry
,
N. H.
, and
Leonidas
,
S.
, eds.
,
1999
,
Modeling Complex Turbulent Flows
,
Springer
,
The Netherlands
.
35.
Versteeg
,
H. K.
, and
Malalasekera
,
M.
, eds.,
2006
,
An Introduction to Computational Fluid Dynamics
, 2nd ed.,
Pearson Education
,
Harlow, UK
.
36.
Sorribes-Palmer
,
F.
,
Sanz-Andres
,
A.
,
Ayuso
,
L.
,
Sant
,
R.
, and
Franchini
,
S.
,
2017
, “
Mixed CFD-1D Wind Turbine Diffuser Design Optimization
,”
Renew. Energy
,
105
, pp.
386
399
.
You do not currently have access to this content.