Abstract

Due to rising global energy demand and mounting environmental concerns associated with the widespread use of fossil fuels in conventional power plants, it is imperative that viable and cleaner energy sources are used. Here, virtually pollution-free renewable energy sources have replaced traditional fossil fuels as the go-to option for meeting the rising energy demand. This research article utilizes a new formulation for minimizing the total cost of a microgrid through a short-term operational strategy. Microgrids and demand-side management can improve the distribution network’s efficiency and reliability. To achieve this goal, this paper explores how to best schedule the uncertain operation of a microgrid including both renewable energy resources like wind turbines and photovoltaics, as well as dispatchable resources like fuel cells, microturbines, and electrical storage devices connected to charging stations for electric vehicles. Considering the unpredictability of wind power and solar power outputs, besides the behavior of plug-in electric vehicle owners in terms of plugging into the grid to inject or receive power, a stochastic programming-based framework is introduced for the operation of microgrids running in the grid-integrated mode. In this study, an innovative and effective optimization algorithm is employed, which is the modified manta ray foraging optimization algorithm, as a high-efficiency method for maximizing the microgrid efficiency. After applying the proposed method to a standard microgrid, the simulation results show how effective it is compared with other approaches.

References

1.
Aihua
,
G.
,
Yihan
,
X.
, and
Rezvani
,
A.
,
2022
, “
Performance Improvement of Maximum Power Point Tracking for Photovoltaic System Using Grasshopper Optimization Algorithm Based ANFIS Under Different Conditions
,”
Optik
,
270
, p.
169965
.
2.
Rezvani
,
A.
,
Gandomkar
,
M.
,
Izadbakhsh
,
M.
, and
Ahmadi
,
A.
,
2015
, “
Environmental/Economic Scheduling of a Micro-Grid With Renewable Energy Resources
,”
J. Clean. Prod.
,
87
, pp.
216
226
.
3.
Aldosary
,
A.
,
Rawa
,
M.
,
Ali
,
Z. M.
,
Razmjoo
,
A.
, and
Rezvani
,
A.
,
2021
, “
Energy Management Strategy Based on Short-Term Resource Scheduling of a Renewable Energy-Based Microgrid in the Presence of Electric Vehicles Using θ-Modified Krill Herd Algorithm
,”
Neural Comput. Appl.
,
33
(
16
), pp.
10005
10020
.
4.
Javadi
,
M.
,
Nezhad
,
A. E.
,
Firouzi
,
K.
,
Besanjideh
,
F.
,
Gough
,
M.
,
Lotfi
,
M.
,
Anvari-Moghadam
,
A.
, and
Catalão
,
J. P.
,
2020
, “
Optimal Operation of Home Energy Management Systems in the Presence of the Inverter-Based Heating, Ventilation and Air Conditioning System
,”
2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe)
,
Madrid, Spain
,
June 9
,
IEEE
, pp.
1
6
.
5.
Moghaddam
,
A. A.
,
Seifi
,
A.
,
Niknam
,
T.
, and
Pahlavani
,
M. R.
,
2011
, “
Multi-Objective Operation Management of a Renewable MG (Micro-Grid) With Back-Up Micro-Turbine/Fuel Cell/Battery Hybrid Power Source
,”
Energy
,
36
(
11
), pp.
6490
6507
.
6.
Moghaddam
,
A. A.
,
Seifi
,
A.
, and
Niknam
,
T.
,
2012
, “
Multi-Operation Management of a Typical Micro-Grids Using Particle Swarm Optimization: A Comparative Study
,”
Renew. Sustain. Energy Rev.
,
16
(
2
), pp.
1268
1281
.
7.
Kavousi-Fard
,
A.
,
Rostami
,
M. A.
, and
Niknam
,
T.
,
2015
, “
Reliability-Oriented Reconfiguration of Vehicle-to-Grid Networks
,”
IEEE Trans. Ind. Inform.
,
11
(
3
), pp.
682
691
.
8.
Kavousi-Fard
,
A.
,
Niknam
,
T.
, and
Fotuhi-Firuzabad
,
M.
,
2015
, “
Stochastic Reconfiguration and Optimal Coordination of V2G Plug-In Electric Vehicles Considering Correlated Wind Power Generation
,”
IEEE Trans. Sustain. Energy
,
6
(
3
), pp.
822
830
.
9.
Luo
,
L.
,
Abdulkareem
,
S. S.
,
Rezvani
,
A.
,
Miveh
,
M. R.
,
Samad
,
S.
,
Aljojo
,
N.
, and
Pazhoohesh
,
M.
,
2020
, “
Optimal Scheduling of a Renewable Based Microgrid Considering Photovoltaic System and Battery Energy Storage Under Uncertainty
,”
J. Energy Storage
,
28
, p.
101306
.
10.
Shi
,
L.
,
Luo
,
Y.
, and
Tu
,
G. Y.
,
2014
, “
Bidding Strategy of Microgrid With Consideration of Uncertainty for Participating in Power Market
,”
Int. J. Electr. Power Energy Syst.
,
59
, pp.
1
3
.
11.
Zhang
,
L.
,
Gari
,
N.
, and
Hmurcik
,
L. V.
,
2014
, “
Energy Management in a Microgrid With Distributed Energy Resources
,”
Energy Convers. Manage.
,
78
, pp.
297
305
.
12.
Motevasel
,
M.
, and
Seifi
,
A. R.
,
2014
, “
Expert Energy Management of a Micro-Grid Considering Wind Energy Uncertainty
,”
Energy Convers. Manage.
,
83
, pp.
58
72
.
13.
Motevasel
,
M.
,
Seifi
,
A. R.
, and
Niknam
,
T.
,
2013
, “
Multi-objective Energy Management of CHP (Combined Heat and Power)-Based Micro-Grid
,”
Energy
,
51
, pp.
123
136
.
14.
Chaouachi
,
A.
,
Kamel
,
R. M.
,
Andoulsi
,
R.
, and
Nagasaka
,
K.
,
2012
, “
Multiobjective Intelligent Energy Management for a Microgrid
,”
IEEE Trans. Ind. Electron.
,
60
(
4
), pp.
1688
1699
.
15.
Aghaei
,
J.
, and
Alizadeh
,
M. I.
,
2013
, “
Multi-Objective Self-Scheduling of CHP (Combined Heat and Power)-Based Microgrids Considering Demand Response Programs and ESSs (Energy Storage Systems)
,”
Energy
,
55
, pp.
1044
1054
.
16.
Niknam
,
T.
,
Azizipanah-Abarghooee
,
R.
, and
Narimani
,
M. R.
,
2012
, “
An Efficient Scenario-Based Stochastic Programming Framework for Multi-Objective Optimal Micro-Grid Operation
,”
Appl. Energy
,
99
, pp.
455
470
.
17.
Esmaeel Nezhad
,
A.
,
Ahmadi
,
A.
,
Javadi
,
M. S.
, and
Janghorbani
,
M.
,
2015
, “
Multi-Objective Decision-Making Framework for an Electricity Retailer in Energy Markets Using Lexicographic Optimization and Augmented Epsilon-Constraint
,”
Int. Trans. Electr. Energy Syst.
,
25
(
12
), pp.
3660
3680
.
18.
Duan
,
B.
,
Wang
,
Q.
,
Zeng
,
X.
,
Gong
,
Y.
,
Song
,
D.
, and
Wang
,
J.
,
2017
, “
Calibration Methodology for Energy Management System of a Plug-In Hybrid Electric Vehicle
,”
Energy Convers. Manage.
,
136
, pp.
240
248
.
19.
Zhao
,
F.
,
Liu
,
F.
,
Liu
,
Z.
, and
Hao
,
H.
,
2019
, “
The Correlated Impacts of Fuel Consumption Improvements and Vehicle Electrification on Vehicle Greenhouse Gas Emissions in China
,”
J. Clean. Prod.
,
207
, pp.
702
716
.
20.
Zhili
,
D.
,
Boqiang
,
L.
, and
Chunxu
,
G.
,
2019
, “
Development Path of Electric Vehicles in China Under Environmental and Energy Security Constraints. Resources
,”
Resour. Conserv. Recycl.
,
143
, pp.
17
26
.
21.
He
,
Y.
,
Venkatesh
,
B.
, and
Guan
,
L.
,
2012
, “
Optimal Scheduling for Charging and Discharging of Electric Vehicles
,”
IEEE Trans. Smart Grid
,
3
(
3
), pp.
1095
1105
.
22.
Sortomme
,
E.
, and
El-Sharkawi
,
M. A.
,
2010
, “
Optimal Charging Strategies for Unidirectional Vehicle-to-Grid
,”
IEEE Trans. Smart Grid
,
2
(
1
), pp.
131
138
.
23.
Honarmand
,
M.
,
Zakariazadeh
,
A.
, and
Jadid
,
S.
,
2014
, “
Optimal Scheduling of Electric Vehicles in an Intelligent Parking Lot Considering Vehicle-to-Grid Concept and Battery Condition
,”
Energy
,
65
, pp.
572
579
.
24.
Shafie-khah
,
M.
,
Moghaddam
,
M. P.
,
Sheikh-El-Eslami
,
M. K.
, and
Rahmani-Andebili
,
M.
,
2012
, “
Modeling of Interactions Between Market Regulations and Behavior of Plug-In Electric Vehicle Aggregators in a Virtual Power Market Environment
,”
Energy
,
40
(
1
), pp.
139
150
.
25.
Tehrani
,
N. H.
,
Shrestha
,
G. B.
, and
Wang
,
P.
,
2013
, “
Vehicle-to-Grid Service Potential With Price Based PEV Charging/Discharging
,”
2013 IEEE Power & Energy Society General Meeting
,
Vancouver, BC, Canada
,
July 21
,
IEEE
, pp.
1
5
.
26.
Soleymani
,
S.
,
Ranjbar
,
A. M.
, and
Shirani
,
A. R.
,
2007
, “
New Approach for Strategic Bidding of Gencos in Energy and Spinning Reserve Markets
,”
Energy Convers. Manage.
,
48
(
7
), pp.
2044
2052
.
27.
Fathabadi
,
H.
,
2015
, “
Utilization of Electric Vehicles and Renewable Energy Sources Used as Distributed Generators for Improving Characteristics of Electric Power Distribution Systems
,”
Energy
,
90
, pp.
1100
1110
.
28.
Bahramara
,
S.
, and
Golpîra
,
H.
,
2018
, “
Robust Optimization of Micro-Grids Operation Problem in the Presence of Electric Vehicles
,”
Sustain. Cities Soc.
,
37
, pp.
388
395
.
29.
Tabatabaee
,
S.
,
Mortazavi
,
S. S.
, and
Niknam
,
T.
,
2017
, “
Stochastic Scheduling of Local Distribution Systems Considering High Penetration of Plug-In Electric Vehicles and Renewable Energy Sources
,”
Energy
,
121
, pp.
480
490
.
30.
Aien
,
M.
,
Fotuhi-Firuzabad
,
M.
, and
Aminifar
,
F.
,
2012
, “
Probabilistic Load Flow in Correlated Uncertain Environment Using Unscented Transformation
,”
IEEE Trans. Power Syst.
,
27
(
4
), pp.
2233
2241
.
31.
Rahimi
,
E.
,
Rabiee
,
A.
,
Aghaei
,
J.
,
Muttaqi
,
K. M.
, and
Nezhad
,
A. E.
,
2013
, “
On the Management of Wind Power Intermittency
,”
Renew. Sustain. Energy Rev.
,
28
, pp.
643
653
.
You do not currently have access to this content.