Abstract

In this work, the technoeconomic assessment of a small-scale gasification-based cogeneration plant (25–50 kWe) fed with green wastes (fallen leaves, spent coffee grounds, and paperboard) is presented. The cogeneration power plant is modeled using Thermoflex software under thermochemical equilibrium and steady-state assumptions. Subsequently, the performance of the cogeneration plant is numerically analyzed as a function of the feedstock moisture content (6–30%), air–waste equivalence ratio (0.20–0.55), and the system load (6.25–25 kWe). The results show that the best energy performance of the cogeneration plant is achieved with a feedstock moisture of 6.05%, an equivalence ratio of 0.358, and a load of 25 kWe. At this best performance mode, the electric generation and cogeneration efficiencies are 19.33% and 49.71%, respectively, with a specific biomass consumption of 1.19 kg/kWh. Two scenarios are established for the economic assessment. The baseline scenario considers a 25-kWe cogeneration plant, while, in the second one, the generation capacity of the system was assumed to be doubled (50 kWe). The financial results show that the power generation has an energy levelized cost of 11.7 ¢$/kWh and 8.4 ¢$/kWh for 25 kWe and 50 kWe, respectively. Nevertheless, none of the proposed scenarios were found to be economically feasible based on the negative net present value obtained. Therefore, further energy laws and regulations are required seeking to support the small-scale auto-generation units based on biomass gasification.

References

1.
Tsai
,
F. M.
,
Bui
,
T. D.
,
Tseng
,
M. L.
, and
Wu
,
K. J.
,
2020
, “
A Causal Municipal Solid Waste Management Model for Sustainable Cities in Vietnam Under Uncertainty: A Comparison
,”
Resour. Conserv. Recycl.
,
154
, p.
104599
.
2.
Unidas
,
N.
,
2015
, “
La Asamblea General Adopta la Agenda 2030 Para el Desarrollo Sostenible
,” https://www.un.org/sustainabledevelopment/es/2015/09/la-asamblea-general-adopta-la-agenda-2030-para-el-desarrollo-sostenible/, Accessed March 13, 2022.
3.
Sirirermrux
,
N.
,
Laohalidanond
,
K.
, and
Kerdsuwan
,
S.
,
2020
, “
Kinetics of Gaseous Species Formation During Steam Gasification of Municipal Solid Waste in a Fixed Bed Reactor
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
011401
.
4.
Burra
,
K. R. G.
,
Fernández Hernández
,
I.
,
Castaldi
,
M. J.
,
Goff
,
S.
, and
Gupta
,
A. K.
,
2023
, “
Effect of Gypsum Waste Inclusion on Gasification of Municipal Solid Waste
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
021701
.
5.
Makarichi
,
L.
,
Jutidamrongphan
,
W.
, and
anan Techato
,
K.
,
2018
, “
The Evolution of Waste-to-Energy Incineration: A Review
,”
Renew. Sustain. Energy Rev.
,
91
, pp.
812
821
.
6.
Kristanto
,
G. A.
, and
Koven
,
W.
,
2019
, “
Estimating Greenhouse Gas Emissions From Municipal Solid Waste Management in Depok, Indonesia
,”
City Environ. Interact.
,
4
, p.
100027
.
7.
Montiel-Bohórquez
,
N. D.
,
Saldarriaga-Loaiza
,
J. D.
, and
Pérez
,
J. F.
,
2021
, “
A Techno-Economic Assessment of Syngas Production by Plasma Gasification of Municipal Solid Waste as a Substitute Gaseous Fuel
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
090901
.
8.
Wang
,
T.
, and
Long
,
H. A.
,
2022
, “
Development and Analysis of an Integrated Mild/Partial Gasification Combined Cycle
,”
ASME J. Energy Resour. Technol.
,
144
(
12)
, p.
122102.
9.
Mukherjee
,
C.
,
Denney
,
J.
,
Mbonimpa
,
E. G.
,
Slagley
,
J.
, and
Bhowmik
,
R.
,
2020
, “
A Review on Municipal Solid Waste-to-Energy Trends in the USA
,”
Renew. Sustain. Energy Rev.
,
119
, p.
109512
.
10.
Pérez Gordillo
,
D. S.
, and
Mantilla González
,
J. M.
,
2022
, “
Computational Optimization of a Spark Ignition Engine Fueled With Biomass-Derived Syngas
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
102309
.
11.
La Villetta
,
M.
,
Costa
,
M.
,
Cirillo
,
D.
,
Massarotti
,
N.
, and
Vanoli
,
L.
,
2018
, “
Performance Analysis of a Biomass Powered Micro-cogeneration System Based on Gasification and Syngas Conversion in a Reciprocating Engine
,”
Energy Convers. Manag.
,
175
, pp.
33
48
.
12.
Lee
,
U.
,
Balu
,
E.
, and
Chung
,
J. N.
,
2013
, “
An Experimental Evaluation of an Integrated Biomass Gasification and Power Generation System for Distributed Power Applications
,”
Appl. Energy
,
101
(
C
), pp.
699
708
.
13.
Martínez
,
L. V.
,
Rubiano
,
J. E.
,
Figueredo
,
M.
, and
Gómez
,
M. F.
,
2020
, “
Experimental Study on the Performance of Gasification of Corncobs in a Downdraft Fixed bed Gasifier at Various Conditions
,”
Renew. Energy
,
148
, pp.
1216
1226
.
14.
Littlejohns
,
J. V.
,
Butler
,
J.
,
Luque
,
L.
,
Kannangara
,
M.
, and
Totolo
,
S.
,
2020
, “
Analysis of the Performance of an Integrated Small-Scale Biomass Gasification System in a Canadian Context
,”
Biomass Convers. Biorefinery
,
10
(
2
), pp.
311
323
.
15.
Maneerung
,
T.
,
Li
,
X.
,
Li
,
C.
,
Dai
,
Y.
, and
Wang
,
C. H.
,
2018
, “
Integrated Downdraft Gasification With Power Generation System and Gasification Bottom Ash Reutilization for Clean Waste-to-Energy and Resource Recovery System
,”
J. Clean. Prod.
,
188
, pp.
69
79
.
16.
Tauqir
,
W.
,
Zubair
,
M.
, and
Nazir
,
H.
,
2019
, “
Parametric Analysis of a Steady State Equilibrium-Based Biomass Gasification Model for Syngas and Biochar Production and Heat Generation
,”
Energy Convers. Manag.
,
199
, p.
111954
.
17.
Cirillo
,
D.
,
Di Palma
,
M.
,
La Villetta
,
M.
,
Macaluso
,
A.
,
Mauro
,
A.
, and
Vanoli
,
L.
,
2021
, “
A Novel Biomass Gasification Micro-cogeneration Plant: Experimental and Numerical Analysis
,”
Energy Convers. Manag.
,
243
, p.
114349
.
18.
Li
,
C. Y.
,
Shen
,
Y.
,
Wu
,
J. Y.
,
Dai
,
Y. J.
, and
Wang
,
C. H.
,
2019
, “
Experimental and Modeling Investigation of an Integrated Biomass Gasifier–Engine–Generator System for Power Generation and Waste Heat Recovery
,”
Energy Convers. Manag.
,
199
, pp.
1
15
.
19.
Mazhkoo
,
S.
,
Dadfar
,
H.
,
Hajihashemi
,
M.
, and
Pourali
,
O.
,
2021
, “
A Comprehensive Experimental and Modeling Investigation of Walnut Shell Gasification Process in a Pilot-Scale Downdraft Gasifier Integrated With an Internal Combustion Engine
,”
Energy Convers. Manag.
,
231
, p.
113836
.
20.
Chang
,
C. T.
,
Costa
,
M.
,
La Villetta
,
M.
,
Macaluso
,
A.
,
Piazzullo
,
D.
, and
Vanoli
,
L.
,
2019
, “
Thermo-economic Analyses of a Taiwanese Combined CHP System Fuelled With Syngas From Rice Husk Gasi fi Cation
,”
Energy
,
167
(
C
), pp.
766
780
.
21.
Wei
,
L.
,
To
,
S. D. F.
,
Pordesimo
,
L.
, and
Batchelor
,
W.
,
2011
, “
Evaluation of Micro-scale Electricity Generation Cost Using Biomass-Derived Synthetic Gas Through Modeling
,”
Int. J. Energy Res.
,
35
(
11
), pp.
989
1003
.
22.
Pedrazzi
,
S.
,
Santunione
,
G.
,
Minarelli
,
A.
, and
Allesina
,
G.
,
2019
, “
Energy and Biochar Co-production From Municipal Green Waste Gasification: A Model Applied to a Landfill in the North of Italy
,”
Energy Convers. Manag.
,
187
, pp.
274
282
.
23.
Pedrazzi
,
S.
,
Santunione
,
G.
,
Mustone
,
M.
,
Cannazza
,
G.
,
Citti
,
C.
,
Francia
,
E.
, and
Allesina
,
G.
,
2021
, “
Techno-Economic Study of a Small Scale Gasifier Applied to an Indoor Hemp Farm: From Energy Savings to Biochar Effects on Productivity
,”
Energy Convers. Manag.
,
228
, p.
113645
.
24.
Elsner
,
W.
,
Wysocki
,
M.
,
Niegodajew
,
P.
, and
Borecki
,
R.
,
2017
, “
Experimental and Economic Study of Small-Scale CHP Installation Equipped With Downdraft Gasifier and Internal Combustion Engine
,”
Appl. Energy
,
202
(
C
), pp.
213
227
.
25.
Pérez
,
J. F.
, and
Osorio
,
L. F.
,
2014
,
Biomasa forestal como alternativa energética. Análisis silvicultural, técnico y financiero de proyectos
,
Editorial Universidad de Antioquia
,
Medellín
.
26.
Montiel-Bohórquez
,
N. D.
, and
Pérez
,
J. F.
,
2022
, “
Energy Valorization Strategies of Fallen Leaves and Woody Biomass in a Based Downdraft Gasification-Engine Power Plant
,”
Sustain. Energy Technol. Assess.
,
49
, p.
101749
.
27.
The United Nations
, “
Sustainable Development Goals—Goal 11: Make Cities Inclusive, Safe, Resilient and Sustainable
,” https://www.un.org/sustainabledevelopment/cities/
28.
Ministerio de Ambiente y Desarrollo Sostenible
,
2021
, “
‘Colombia Está Comprometida con la Acción Climática Global’: Ministro de Ambiente
,” https://www.minambiente.gov.co/cambio-climatico-y-gestion-del-riesgo/colombia-esta-comprometida-con-la-accion-climatica-global-ministro-de-ambiente/, Accessed August 30, 2022.
29.
Unidad de Planeación Minero-Energética (UPME)
,
2015
,
Colombian Energy Plan: 2050 Vision (in Spanish)
,
Bogotá D.C
.
31.
González
,
W. A.
,
López
,
D.
, and
Pérez
,
J. F.
,
2020
, “
Biofuel Quality Analysis of Fallen Leaf Pellets: Effect of Moisture and Glycerol Contents as Binders
,”
Renew. Energy
,
147
(
part 1
), pp.
1139
1150
.
32.
Sùrum
,
L.
,
Grùnli
,
M. G.
, and
Hustad
,
J. E.
,
2001
, “
Pyrolysis Characteristics and Kinetics of Municipal Solid Wastes
,”
Fuel
,
80
(
9
), pp.
1217
1227
.
33.
Song
,
M.
,
Tang
,
M.
,
Lv
,
S.
,
Wang
,
X.
,
Jin
,
B.
,
Zhong
,
Z.
, and
Yuang
,
Y.
,
2014
, “
The Pyrolysis of Multi-Component Municipal Solid Waste in Fixed Bed Reactor for Activated Carbon Production
,”
J. Anal. Appl. Pyrolysis
,
109
, pp.
278
282
.
34.
Zhou
,
H.
,
Long
,
Y.
,
Meng
,
A.
,
Li
,
Q.
, and
Zhang
,
Y.
,
2015
, “
Classification of Municipal Solid Waste Components for Thermal Conversion in Waste-to-Energy Research
,”
Fuel
,
145
, pp.
151
157
.
35.
Byul
,
S.
,
Young
,
H.
,
Jin
,
J.
, and
Sung
,
K.
,
2017
, “
Characteristics of Spent Coffee Ground as a Fuel and Combustion Test in a Small Boiler (6.5 kW)
,”
Renew. Energy
,
113
, pp.
1208
1214
.
36.
Tangmankongworakoon
,
N.
,
2019
, “
An Approach to Produce Biochar From Coffee Residue for Fuel and Soil Amendment Purpose
,”
Int. J. Recycl. Org. Waste Agric.
,
8
(
1
), pp.
37
44
.
37.
Li
,
X.
,
Strezov
,
V.
, and
Kan
,
T.
,
2014
, “
Energy Recovery Potential Analysis of Spent Coffee Grounds Pyrolysis Products
,”
J. Anal. Appl. Pyrolysis.
110
, pp.
79
87
38.
Limousy
,
L.
,
Jeguirim
,
M.
,
Dutournié
,
P.
,
Kraiem
,
N.
,
Lajili
,
M.
, and
Said
,
R.
,
2013
, “
Gaseous Products and Particulate Matter Emissions of Biomass Residential Boiler Fired With Spent Coffee Grounds Pellets
,”
Fuel
,
107
, pp.
323
329
.
39.
Mayson
,
S.
, and
Williams
,
I. D.
,
2021
, “
Applying a Circular Economy Approach to Valorize Spent Coffee Grounds
,”
Resour. Conserv. Recycl.
,
172
, p.
105659
.
40.
Montiel-bohórquez
,
N. D.
, and
Pérez
,
J. F.
,
2019
, “
Generación de Energía a partir de Residuos Sólidos Urbanos. Estrategias Termodinámicas para Optimizar el Desempeño de Centrales Térmicas
,”
Inf. Tecnológica
,
30
(
1
), pp.
273
284
.
41.
All Power Labs
, “
PP30 Power Pallet
,” https://www.allpowerlabs.com/pp30-power-pallet, Accessed March 13, 2022.
42.
All Power Labs
, “
The Company
,” https://www.allpowerlabs.com/about-apl, Accessed March 13, 2022.
43.
Susastriawan
,
A. A. P.
, and
Saptoadi
,
H.
,
2017
, “
Small-Scale Downdraft Gasifiers for Biomass Gasification : A Review
,”
Renewable Sustainable Energy Rev.
,
76
, pp.
989
1003
.
44.
Carolina
,
A.
,
Jimenez
,
M.
,
Nordi
,
G. H.
,
Cecilia
,
M.
,
Bereche
,
P.
, and
Bereche
,
R. P.
,
2017
, “
Evaluation of Two Different Alternatives of Energy Recovery From Municipal Solid Waste in Brazil
,”
Waste Manag. Res.
,
35
, pp.
1137
1148
.
45.
Medina Jimenez
,
A. C.
,
Bereche
,
R. P.
, and
Nebra
,
S.
,
2019
, “
Three Municipal Solid Waste Gasification Technologies Analysis for Electrical Energy Generation in Brazil
,”
Waste Manag. Res.
,
37
(
6
), pp.
631
642
.
46.
Costa
,
M.
,
Rocco
,
V.
,
Caputo
,
C.
,
Cirillo
,
D.
,
Di Blasio
,
G.
,
La Villetta
,
M.
,
Martoriello
,
G.
, and
Tuccillo
,
R.
,
2019
, “
Model Based Optimization of the Control Strategy of a Gasifier Coupled with a Spark Ignition Engine in a Biomass Powered Cogeneration System
,”
Appl. Therm. Eng.
,
160
, p.
114083
.
47.
Caputo
,
C.
,
Cirillo
,
D.
,
Costa
,
M.
,
La Villetta
,
M.
,
Tuccillo
,
R.
, and
Villani
,
R.
,
2018
, “
Numerical Analysis of a Combined Heat and Power Generation Technology From Residual Biomasses
,”
Eur. Biomass Conf. Exhib. Proc.
,
12
(
6
), pp.
1547
1559
.
48.
Wilts
,
H.
, and
von Gries
,
N.
,
2015
, “
Europe’s Waste Incineration Capacities in a Circular Economy
,”
Proc. Inst. Civ. Eng.—Waste Resour. Manag.
,
168
(
4
), pp.
166
176
.
49.
Gutiérrez
,
J.
,
Rubio-Clemente
,
A.
, and
Pérez
,
J. F.
,
2021
, “
Effect of Main Solid Biomass Commodities of Patula Pine on Biochar Properties Produced Under Gasification Conditions
,”
Ind. Crops Prod.
,
160
, p.
113123
.
50.
Han
,
J.
,
Liang
,
Y.
,
Hu
,
J.
,
Qin
,
L.
,
Street
,
J.
,
Lu
,
Y.
, and
Yu
,
F.
,
2017
, “
Modeling Downdraft Biomass Gasification Process by Restricting Chemical Reaction Equilibrium With Aspen Plus
,”
Energy Convers. Manag.
,
153
, pp.
641
648
.
51.
Thermoflow
, “
General Purpose Program for Design & Simulation of Gas Turbine Combined Cycles, Cogeneration Systems, Conventional Steam Plants, Renewable Energy and Other Thermal Systems
,” https://www.thermoflow.com/products_generalpurpose.html, Accessed March 13, 2022.
52.
Velayos Morales
,
V.
,
2021
, “
Net Present Value-NPV (in Spanish)
,” https://economipedia.com/definiciones/valor-actual-neto.html, Accessed December 5, 2022.
53.
Westreicher
,
G.
,
2021
, “
Return on Investment—ROI (in Spanish)
,” https://economipedia.com/definiciones/retorno-de-la-inversion-roi.html, Accessed December 5, 2022.
54.
Pérez
,
J. F.
,
Osorio
,
L. F.
, and
Agudelo
,
A. F.
,
2018
, “
A Technical-Economic Analysis of Wood Gasification for Decentralized Power Generation in Colombian Forest Cores
,”
Int. J. Renew. Energy Res.
,
8
(
2
), pp.
1071
1084
.
55.
Yao
,
Z.
,
You
,
S.
,
Ge
,
T.
, and
Wang
,
C. H.
,
2018
, “
Biomass Gasification for Syngas and Biochar Co-production: Energy Application and Economic Evaluation
,”
Appl. Energy
,
209
, pp.
43
55
.
56.
Martínez Rodríguez
,
E.
,
2005
, “
Errores Frecuentes en la Interpretación del Coeficiente de Determinación Lineal
,”
Anu. jurídico y económico Escur.
,
38
, pp.
315
332
.
57.
Lee
,
R. P.
,
Meyer
,
B.
,
Huang
,
Q.
, and
Voss
,
R.
,
2020
, “
Sustainable Waste Management for Zero Waste Cities in China: Potential, Challenges and Opportunities
,”
Clean Energy
,
4
(
3
), pp.
169
201
.
58.
Unidad de Planeación Minero Energética (UPME)
,
2014
, “
Guia práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014
,”
Minist. Minas y Energ.
, p.
28
. https://www1.upme.gov.co/Documents/Cartilla_IGE_Incentivos_ Tributarios_Ley1715.pdf
59.
All Power Labs
, “
Containerized Dual PP30 50 kW Genset—ALL Power Labs
,” https://www.allpowerlabs.com/containerized-dual-pp30-50-kw-genset, Accessed March 15, 2022.
60.
XM-ISA Group
,
2022
, “
Electricity Price in Colombian Market (in Spanish)
,”
XM
, https://www.xm.com.co/transacciones/cargo-por-confiabilidad/precio-de-bolsa-y-escasez
61.
González
,
X.
,
2020
, “
En Colombia el Factor de Emisión de CO2 por Generación Eléctrica es de 164,38 Gramos por kWh
,”
Diario La República
, https://www.larepublica.co/especiales/colombia-potencia-energetica/en-colombia-el-factor-de-emision-de-co2-por-generacion-electrica-es-de-16438-gramos-por-kwh-2966236, Accessed March 15, 2022.
62.
Montiel-Bohórquez
,
J. D.
,
Saldarriaga-loaiza
,
N. D.
, and
Perez
,
J. F.
,
2022
, “
Effect of the Colombian Renewable Energy Law on the Levelized Cost of a Substitute Gaseous Fuel Produced From MSW Gasification
,”
Ingeniería e Investigación
,
42
(
2
), p.
e92410
.
You do not currently have access to this content.