Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Rate-transient analysis (RTA) has been widely applied to extract reservoir/fracture properties using analytical and semi-analytical methods with simplifying assumptions. However, current RTA models may lead to misdiagnosis of flow regimes and incorrect estimates of reservoir/fracture information when complex fracture networks, multiphase flow, and pressure-dependent properties occur in tight reservoirs simultaneously. A semi-analytical model is developed to account for multiphase flow, complex fracture networks, and pressure-dependent properties. The technique uses the black oil formulation and butterfly model to determine three nonlinear partial differential equations (PDEs) that describe the flow of oil, gas, and water in the reservoir with a complex fracture network. A modified Boltzmann variable considering the heterogeneity of the complex fracture network is proposed to convert the fluid flow PDEs to a set of ordinary differential equations (ODEs) that can be solved through the Runge–Kutta method. A new rate-transient analysis workflow is also developed to improve flow regime identification (ID) and the accuracy of tight oil reservoirs with complex fracture networks. It is applied to a synthetic case with an equivalently modeled complex fracture network and multiphase flow. The estimated fracture properties are in excellent agreement with model inputs.

References

1.
Clarkson
,
C. R.
,
2013
, “
Production Data Analysis of Unconventional gas Wells: Workflow
,”
Int. J. Coal Geol.
,
109
, pp.
147
157
.
2.
Yuan
,
B.
,
Clarkson
,
C. R.
,
Zhang
,
Z.
, and
Zhu
,
X.
,
2021
, “
Deviations From Transient Linear Flow Behavior: A Systematic Investigation of Possible Controls on Abnormal Reservoir Signatures
,”
J. Petrol. Sci. Eng.
,
205
, p.
108910
.
3.
He
,
Y.
,
Xu
,
Y.
,
Tang
,
Y.
,
Qiao
,
Y.
,
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2022
, “
Multi-Phase Rate Transient Behaviors of the Multi-Fractured Horizontal Well With Complex Fracture Networks
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
043006
.
4.
Chu
,
H.
,
Dong
,
P.
, and
Lee
,
W. J.
,
2023
, “
A Deep-Learning Approach for Reservoir Evaluation for Shale Gas Wells With Complex Fracture Networks
,”
Adv. Geo-Energy Res.
,
7
(
1
), pp.
49
65
.
5.
Qin
,
J.
,
Xu
,
Y.
,
Tang
,
Y.
,
Liang
,
R.
,
Zhong
,
Q.
,
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2022
, “
Impact of Complex Fracture Networks on Rate Transient Behavior of Wells in Unconventional Reservoirs Based on Embedded Discrete Fracture Model
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
083007
.
6.
Wang
,
H.
,
2018
, “
Discrete Fracture Networks Modeling of Shale Gas Production and Revisit Rate Transient Analysis in Heterogeneous Fractured Reservoirs
,”
J. Petrol. Sci. Eng.
,
169
, pp.
796
812
.
7.
Cui
,
Q.
,
Zhao
,
Y.
,
Zhang
,
L.
,
Chen
,
M.
,
Gao
,
S.
, and
Chen
,
Z.
,
2023
, “
A Semianalytical Model of Fractured Horizontal Well With Hydraulic Fracture Network in Shale Gas Reservoir for Pressure Transient Analysis
,”
Adv. Geo-Energy Res.
,
8
(
3
), pp.
193
205
.
8.
Raghavan
,
R.
, and
Chen
,
C.-C.
,
2018
, “
A Conceptual Structure to Evaluate Wells Producing Fractured Rocks of the Permian Basin
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Sept. 24–26
.
9.
Acuña
,
J. A.
,
2016
, “
Analytical Pressure and Rate Transient Models for Analysis of Complex Fracture Networks in Tight Reservoirs
,”
Unconventional Resources Technology Conference
,
San Antonio, TX
,
Aug. 1–3
.
10.
Chu
,
W.
,
Pandya
,
N. D.
,
Flumerfelt
,
R. W.
, and
Chen
,
C.
,
2019
, “
Rate-Transient Analysis Based on the Power-Law Behavior for Permian Wells
,”
SPE Reserv. Eval. Eng.
,
22
(
4
), pp.
1360
1370
.
11.
Cipolla
,
C.
, and
Wallace
,
J.
,
2014
, “
Stimulated Reservoir Volume: A Misapplied Concept?
SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Feb. 4–6
.
12.
Babadagli
,
T.
,
2020
, “
Unravelling Transport in Complex Natural Fractures With Fractal Geometry: A Comprehensive Review and New Insights
,”
J. Hydrol.
,
587
, p.
124937
.
13.
Ozkan
,
Y.
, and
Onur
,
M.
,
2023
, “
Analytical Solutions of Fractal and Anomalous Diffusion Models for Pressure and Rate Transient Analysis
,”
Geoenergy Sci. Eng.
,
229
, p.
212129
.
14.
Wang
,
W.
,
Su
,
Y.
,
Zhang
,
Q.
,
Xiang
,
G.
, and
Cui
,
S.
,
2017
, “
Performance-Based Fractal Fracture Model for Complex Fracture Network Simulation
,”
Petrol. Sci.
,
15
(
1
), pp.
126
134
.
15.
Chang
,
J.
, and
Yortsos
,
Y. C.
,
1990
, “
Pressure-Transient Analysis of Fractal Reservoirs
,”
SPE Form. Eval.
,
5
(
01
), pp.
31
38
.
16.
Flamenco-López
,
F.
, and
Camacho-Velázquez
,
R.
,
2003
, “
Determination of Fractal Parameters of Fracture Networks Using Pressure-Transient Data
,”
SPE Reserv. Eval. Eng.
,
6
(
01
), pp.
39
47
.
17.
Valdes-Perez
,
A.
, and
Blasingame
,
T. A.
,
2021
, “
Pressure-Transient Behavior of Double-Porosity Reservoirs With Transient Interporosity Transfer With Fractal Matrix Blocks
,”
SPE J.
,
26
(
04
), pp.
2417
2439
.
18.
Acuña
,
J. A.
,
2015
, “
Application of Linear Flow Volume to Rate Transient Analysis
,”
SPE Hydraulic Fracturing Technology Conference
,
The Woodlands, TX
,
Feb. 3–5
.
19.
Fan
,
D.
, and
Ettehadtavakkol
,
A.
,
2017
, “
Semi-Analytical Modeling of Shale Gas Flow Through Fractal Induced Fracture Networks With Microseismic Data
,”
Fuel
,
193
, pp.
444
459
.
20.
Sheng
,
G.
,
Su
,
Y.
, and
Wang
,
W.
,
2019
, “
A new Fractal Approach for Describing Induced-Fracture Porosity/Permeability/Compressibility in Stimulated Unconventional Reservoirs
,”
J. Petrol. Sci. Eng.
,
179
, pp.
855
866
.
21.
Al-Rbeawi
,
S.
,
2020
, “
The Performance of Complex-Structure Fractured Reservoirs Considering Natural and Induced Matrix Block Size, Shape, and Distribution
,”
J. Nat. Gas Sci. Eng.
,
81
, p.
103400
.
22.
Wang
,
W.
,
Fan
,
D.
,
Sheng
,
G.
,
Chen
,
Z.
, and
Su
,
Y.
,
2019
, “
A Review of Analytical and Semi-Analytical Fluid Flow Models for Ultra-Tight Hydrocarbon Reservoirs
,”
Fuel
,
256
, p.
115737
.
23.
Zhang
,
W.
, and
Xu
,
J.
,
2021
, “
A Generalized Analytical Model for Hydrocarbon Production Using Multi-Fractured Horizontal Well With Non-Uniform Permeability Distributions
,”
Int. J. Hydrogen Energy
,
46
(
1
), pp.
324
340
.
24.
Albinali
,
A.
, and
Ozkan
,
E.
,
2016
, “
Anomalous Diffusion Approach and Field Application for Fractured Nano-Porous Reservoirs
,”
SPE Annual Technical Conference and Exhibition
,
Dubai, UAE
,
Sept. 26–28
.
25.
Liu
,
S.
, and
Valkó
,
P. P.
,
2019
, “
Production-Decline Models Using Anomalous Diffusion Stemming From a Complex Fracture Network
,”
SPE J.
,
24
(
06
), pp.
2609
2634
.
26.
Al-Rbeawi
,
S.
,
2020
, “
The Impact of Spatial and Temporal Variability of Anomalous Diffusion Flow Mechanisms on Reservoir Performance in Structurally Complex Porous Media
,”
J. Nat. Gas Sci. Eng.
,
78
, p.
103331
.
27.
Acuña
,
J. A.
,
2017
, “
Pressure and Rate Transient Analysis in Fracture Networks in Tight Reservoirs Using Characteristic Flow Volume
,”
Unconventional Resources Technology Conference
,
Austin, TX
,
July 24–26
.
28.
Acuna
,
J. A.
, and
Yortsos
,
Y. C.
,
1991
, “
Numerical Construction and Flow Simulation in Networks of Fractures Using Fractal Geometry
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 6–9
.
29.
Zanganeh
,
B.
, and
Acuna
,
J.
,
2022
, “
Fractional Dimension RTA in Unconventional Wells: Application in Multi-Phase Analysis, History Matching, Forecasting and Interference Evaluation
,”
Unconventional Resources Technology Conference
,
Houston, TX
,
June 20–22
.
30.
Qanbari
,
F.
, and
Clarkson
,
C. R.
,
2016
, “
Rate-Transient Analysis of Liquid-Rich Tight/Shale Reservoirs Using the Dynamic Drainage Area Concept: Examples From North American Reservoirs
,”
SPE Low Perm Symposium
,
Denver, CO
,
May 5–6
.
31.
Al-Rbeawi
,
S.
,
2019
, “
Integrated Deterministic Approaches for Productivity Index of Reservoirs Depleted by Horizontal Wells and Undergone Multiphase Flow Conditions
,”
J. Nat. Gas Sci. Eng.
,
64
, pp.
152
174
.
32.
Lei
,
Z.
,
Li
,
J.
,
Chen
,
Z.
,
Dai
,
X.
,
Ji
,
D.
,
Wang
,
Y.
, and
Liu
,
Y.
,
2023
, “
Characterization of Multiphase Flow in Shale Oil Reservoirs Considering Multiscale Porous Media by High-Resolution Numerical Simulation
,”
SPE J.
,
28
(
06
), pp.
3101
3116
.
33.
Shahamat
,
M. S.
, and
Clarkson
,
C. R.
,
2018
, “
Multiwell, Multiphase Flowing Material Balance
,”
SPE Reserv. Eval. Eng.
,
21
(
02
), pp.
445
461
.
34.
Zhang
,
W.
,
Cui
,
Y.
,
Jiang
,
R.
,
Xu
,
J.
,
Qiao
,
X.
,
Jiang
,
Y.
,
Zhang
,
H.
, and
Wang
,
X.
,
2019
, “
Production Performance Analysis for Horizontal Wells in Gas Condensate Reservoir Using Three-Region Model
,”
J. Nat. Gas Sci. Eng.
,
61
, pp.
226
236
.
35.
Qanbari
,
F.
, and
Clarkson
,
C. R.
,
2013
, “
A New Method for Production Data Analysis of Tight and Shale Gas Reservoirs During Transient Linear Flow Period
,”
J. Nat. Gas Sci. Eng.
,
14
, pp.
55
65
.
36.
Qanbari
,
F.
,
Clarkson
,
C. R.
, and
Shahamat
,
M. S.
,
2017
, “
Incorporation of Formation Water Into Rate-Transient Analysis of Tight Oil Wells With High Water-Oil Ratio: A Field Example From North America
,”
SPE Western Regional Meeting
,
Bakersfield, CA
,
Apr. 23–27
.
37.
Yuan
,
B.
,
Zheng
,
D.
,
Moghanloo
,
R. G.
, and
Wang
,
K.
,
2017
, “
A Novel Integrated Workflow for Evaluation, Optimization, and Production Predication in Shale Plays
,”
Int. J. Coal Geol.
,
180
, pp.
18
28
.
38.
Zhang
,
M.
,
Becker
,
M. D.
, and
Ayala
,
L. F.
,
2016
, “
A Similarity Method Approach for Early-Transient Multiphase Flow Analysis of Liquid-Rich Unconventional Gas Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
572
586
.
39.
Hamdi
,
H.
,
Behmanesh
,
H.
, and
Clarkson
,
C. R.
,
2018
, “
A Semi-Analytical Approach for Analysis of the Transient Linear Flow Regime in Tight Reservoirs Under Three-Phase Flow Conditions
,”
J. Nat. Gas Sci. Eng.
,
54
, pp.
283
296
.
40.
Clarkson
,
C. R.
,
2021
, “Chapter Eight—Modification of RTA Methods for Unconventional Reservoirs, Part 3: Tight and Shale Reservoirs Exhibiting Multiphase Flow,”
Unconventional Reservoir Rate-Transient Analysis
,
Gulf Professional Publishing
, pp.
799
980
.
41.
Li
,
J.
,
Yuan
,
B.
,
Clarkson
,
C. R.
, and
Tian
,
J.
,
2023
, “
A Semi-Analytical Rate-Transient Analysis Model for Light oil Reservoirs Exhibiting Reservoir Heterogeneity and Multiphase Flow
,”
Petrol. Sci.
,
20
(
1
), pp.
309
321
.
42.
Whitson
,
C. H.
, and
Sunjerga
,
S.
,
2012
, “
PVT in Liquid-Rich Shale Reservoirs
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Oct. 8–10
.
43.
Zhang
,
M.
,
Vardcharragosad
,
P.
, and
Ayala
,
H. L. F.
,
2014
, “
The Similarity Theory Applied to Early-Transient Gas Flow Analysis in Unconventional Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
21
, pp.
659
668
.
44.
Behmanesh
,
H.
,
Hamdi
,
H.
, and
Clarkson
,
C. R.
,
2015
, “
Production Data Analysis of Tight gas Condensate Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
22
, pp.
22
34
.
45.
Hamdi
,
H.
,
Behmanesh
,
H.
, and
Clarkson
,
C. R.
,
2020
, “
A Semianalytical Approach for Analysis of Wells Exhibiting Multiphase Transient Linear Flow: Application to Field Data
,”
SPE J.
,
25
(
06
), pp.
3265
3279
.
46.
Wang
,
F.
,
Xu
,
H.
,
Liu
,
Y.
,
Meng
,
X.
, and
Liu
,
L.
,
2023
, “
Mechanism of Low Chemical Agent Adsorption by High Pressure for Hydraulic Fracturing-Assisted oil Displacement Technology: A Study of Molecular Dynamics Combined With Laboratory Experiments
,”
Langmuir.
,
39
(
46
), pp.
16628
16636
.
47.
Acuña
,
J. A.
,
2020
, “
Rate Transient Analysis of Fracture Swarm Fractal Networks
,”
Unconventional Resources Technology Conference
,
Virtual
,
July 20–22
.
48.
Nojabaei
,
B.
,
Johns
,
R. T. T.
, and
Chu
,
L.
,
2013
, “
Effect of Capillary Pressure on Phase Behavior in Tight Rocks and Shales
,”
SPE Reserv. Eval. Eng.
,
16
(
03
), pp.
281
289
.
49.
Thompson
,
L. G.
, and
Ruddick
,
B. A.
,
2022
, “
Multiphase Flowing Material Balance Without Relative Permeability Curves
,”
Unconventional Resources Technology Conference
,
Houston, TX
.
50.
Stone
,
H. L.
,
1970
, “
Probability Model for Estimating Three-Phase Relative Permeability
,”
J. Petrol. Technol.
,
22
(
02
), pp.
214
218
.
51.
Behzadi
,
H.
, and
Alvarado
,
V.
,
2010
, “
Impact of Three-Phase Relative Permeability Model on Recovery in Mixed Media: Miscibility, IFT, and Hysteresis Issues
,”
Energy Fuels
,
24
(
10
), pp.
5765
5772
.
52.
Dehghanpour
,
H.
, and
DiCarlo
,
D. A.
,
2013
, “
A Comparative Study of Transient and Steady-State Three-Phase Oil Permeability
,”
J. Canadian Petrol. Technol.
,
52
(
01
), pp.
54
63
.
53.
Stelson
,
H. E.
,
1950
, “
Note on an Extension of the Method of Undetermined Coefficients in Solving a Linear Differential Equation
,”
Am. Math. Monthly
,
57
, p.
547
.
54.
Chapra
,
S. C.
, and
Canale
,
R. P.
,
2006
,
Numerical Methods for Engineers
,
McGraw-Hill
,
New York
.
55.
Eiger
,
A.
,
Sikorski
,
K.
, and
Stenger
,
F.
,
1984
, “
A Bisection Method for Systems of Nonlinear Equations
,”
ACM Trans. Math. Softw.
,
10
(
4
), pp.
367
377
.
56.
Zhong
,
H.
,
Shen
,
W.
,
Zang
,
Q.
, and
Xu
,
Y.
,
2022
, “
Pressure Transient of Polymer Flooding Considering Induced Fractures Based on PEBI Grid
,”
Lithologic Reserv.
,
34
(
3
), pp.
164
170
.
57.
Tabatabaie
,
S. H.
, and
Pooladi-Darvish
,
M.
,
2016
, “
Multiphase Linear Flow in Tight Oil Reservoirs
,”
SPE Reserv. Eval. Eng.
,
20
(
1
), pp.
184
196
.
58.
Clarkson
,
C. R.
, and
Williams-Kovacs
,
J.
,
2019
,
Hydraulic Fracturing: Fundamentals and Advancements
,
Society of Petroleum Engineers
.
59.
Bourdet
,
D.
,
Ayoub
,
J. A.
, and
Plrard
,
Y. M.
,
1989
, “
Use of Pressure Derivative in Well-Test Interpretation
,”
SPE Form. Eval.
,
4
(
02
), pp.
293
302
.
60.
Vasquez
,
M.
, and
Beggs
,
H. D.
,
1980
, “
Correlations for Fluid Physical Property Prediction
,”
J. Petrol. Technol.
,
32
(
06
), pp.
968
970
.
61.
Acuña
,
J. A.
,
Wang
,
S.
, and
Forand
,
D.
,
2018
, “
Alternative Production Mechanisms in Unconventional Reservoirs
,”
Unconventional Resources Technology Conference
,
Houston, TX
.
You do not currently have access to this content.