This paper examines the use of computational fluid dynamics as a tool for predicting human exposure to aerosols generated during compressed air spray painting in cross-flow ventilated booths. Wind tunnel experiments employing a mannequin and non-volatile oil provide data to evaluate the numerical predictions. Fidap (v8.01) is used to calculate the velocity field and particle trajectories, while in-house codes were developed to post-process the trajectory data into mass concentrations, size distributions, transfer efficiency, and over-spray generation rates. The predicted dimensionless breathing-zone concentration of 0.13±23 percent is in agreement with the measured value of 0.13±15 percent given the uncertainties involved in such comparisons. Computational fluid dynamics is a powerful tool capable of providing useful information to occupational hygiene engineers involved in controlling human exposures to toxic airborne contaminants.

1.
Heinonen
,
K.
,
Kulmala
,
I.
, and
Saamanen
,
A.
,
1996
, “
Local Ventilation for Powder Handling a Combination of Local Supply and Exhaust Air
,”
Am. Ind. Hyg. Assoc. J.
,
57
, pp.
356
365
.
2.
Kulmala
,
I.
,
Saamanen
,
A.
, and
Enbom
,
S.
,
1996
, “
The Effect of Contaminant Source Location on Worker Exposure in the Near-Wake Region
,”
Ann. Occup. Hyg.
,
40
, pp.
511
523
.
3.
Flynn
,
M. R.
, and
Sills
,
E.
,
2000
, “
On the use of computational fluid dynamics in the prediction and control of exposure to airborne contaminants–an illustration using spray painting
,”
Ann. Occup. Hyg.
,
44
, No.
3
, pp.
191
202
.
4.
Flynn
,
M. R.
,
Gatano
,
B.
,
McKernan
,
J. L.
,
Dunn
,
K.
,
Blazicko
,
B. A.
, and
Carlton
,
G. N.
,
1999
, “
Modeling Breathing-Zone Concentrations of Airborne Contaminants Generated During Compressed Air Spray Painting
,”
Ann. Occup. Hyg.
,
43
, No.
1
, pp.
67
76
.
5.
Carlton
,
G. N.
, and
Flynn
,
M. R.
,
1997
, “
Field Evaluation of an Empirical-Conceptual Exposure Model
,”
Appl. Occup. Environ. Hyg.
,
12
, No.
8
, pp.
555
561
.
6.
Heitbrink
,
W. A.
,
Wallace
,
M. E.
,
Bryant
,
C. J.
, and
Ruch
,
W. E.
,
1995
, “
Control of Paint Overspray in Autobody Repair Shops
,”
Am. Ind. Hyg. Assoc. J.
,
56
, No.
10
, pp.
1023
1032
.
7.
Carlton
,
G. N.
, and
Flynn
,
M. R.
,
1997
, “
A Model to Estimate Worker Exposure to Spray Paint Mists
,”
Appl. Occup. Environ. Hyg.
,
12
, No.
5
, pp.
375
382
.
8.
Carlton
,
G. N.
, and
Flynn
,
M. R.
,
1997
, “
Influence of Spray Painting parameters on Breathing Zone Particle Size Distributions
,”
Appl. Occup. Environ. Hyg.
,
12
, No.
11
, pp.
744
750
.
9.
Kim
,
K. Y.
, and
Marshall
,
J. R.
,
1971
, “
Drop-Size Distributions from Pneumatic Atomizers
,”
AIChE J.
,
17
, No.
3
, pp.
575
584
.
10.
Tan
,
Y.
, and
Flynn
,
M. R.
,
2000
, “
Experimental Evaluation of a Mathematical Model for Predicting Transfer Efficiency of a High Volume–Low Pressure Air Spray Gun
,”
Appl. Occup. Environ. Hyg.
,
15
, No.
10
, pp.
785
793
.
11.
Vincent, J., 1995, Aerosol Science for Industrial Hygienists, Pergamon Press, New York, NY.
12.
Hicks
,
P. G.
, and
Senser
,
D. W.
,
1995
, “
Simulation of Paint Transfer in an Air Spray Process
,”
ASME J. Fluids Eng.
,
117
, pp.
713
719
.
13.
Fluid Dynamics International, 1998, FIDAP Manual, Evanston III.
14.
Gosman, A. D., and Ioannides, E., 1981, “Aspects of Computer Simulation of Liquid-Fuelled Combustors,” AAIA 19th Aerospace Mtg., Paper No. 81-0323, St. Louis, MO.
15.
Heinsohn, R. J., 1991, Industrial Ventilation: Engineering Principles, Wiley Interscience, New York, NY.
16.
Domnick, J., Tropea, C., and Xu T. H., 1991, “Measurements in Paint Sprays Using a Phase-Doppler Anemometer” Proceedings of the International Conference on Liquid Atomization and Spray Systems (5th), NTIS pb91-216838 pp. 129–138.
You do not currently have access to this content.