Cavitation inception on an E817 hydrofoil issued from an inverse calculus for ideal fluid has been numerically analyzed for speeds and scales inherent to both model test and full-scale marine conditions. The computations have been carried out with account to the Reynolds number effect on hydrofoil lift and combined effect of the Reynolds number and Weber number on the equilibrium of sheet cavities in the hydrofoil boundary layer. Different levels of scale effects for cavitation inception on suction and pressure sides of E817 hydrofoil are shown. Comparison with the scale effect of cavitation inception on conventional NACA-0012 hydrofoil has helped to explain this difference. Issues in blade design with sections similar to E817 are discussed.

1.
Eppler, R., 1990, Airfoil Design and Data, Springer-Verlag, Berlin.
2.
Garabedian
,
P. R.
, and
Spencer
,
D. C.
,
1952
, “
Extermal methods in cavitation flow
,”
J. Rational Mech. Analysis
,
1
, pp.
309
320
.
3.
Dorange, P., Astolfi, J. A., Billard, J. Y. and Fruman, D. H., 1988, “Cavitation inception and development on two-dimensional hydrofoils,” Third Int. Symp. On Cavitation, Grenoble, Vol. 1, pp. 227–232.
4.
Astolfi
,
J. A.
,
Dorange
,
P.
,
Billard
,
J. Y.
, and
Cid Tomas
,
I.
,
2000
, “
An Experimental Investigation of Cavitation Inception and Development on a Two-Dimensional Eppler Hydrofoi
,”
ASME J. Fluids Eng.
,
122
, pp.
164
173
.
5.
Huang
,
T. T.
, and
Peterson
,
F. B.
,
1976
, “
Influence of Viscous Effects on Model/Full Scale Cavitation Scaling
,”
J. Ship Res.
,
20
, pp.
215
223
.
6.
Billet
,
M. L.
, and
Holl
,
J. W.
,
1981
, “
Scale Effects on Various Types of Limited Cavitation
,”
ASME J. Fluids Eng.
,
103
, pp.
405
414
.
7.
Amromin
,
E. L.
,
1985
, “
On Cavitation Flow Calculation for Viscous Capillary Fluid
,”
Fluid Dyn.
,
20
, pp.
891
899
.
8.
Amromin
,
E. L.
,
2000
, “
Analysis of Viscous Effects on Cavitation
,”
Appl. Mech. Rev.
,
53
, pp.
307
322
.
9.
Jessup, S. D., and Wang, H. C., 1997, “Propeller design and evaluation for a high speed patrol boat incorporating iterative analysis with panel method,” SNAME Propeller/shafting ’97 Symp., Virginia-Beach, pp. 1101–1125.
10.
Cox, B. D., Kimball, R. W. and Scherer, O., 1997, “Hydrofoil section with think trailing edges,” SNAME Propeller/Shafting ’97 Symp., Virginia-Beach, pp. 1801–1818.
11.
Ivanov, A. H., 1980, Hydrodynamic of Developed Cavitating Flow, Sydostroenie, Leningrad (in Russian).
12.
Kinnas, S. A., 1998 “The prediction of unsteady sheet cavitation” Third Intern. Symp. on Cavitation, Grenoble, Vol. 1, pp. 19–38.
13.
Tulin, M. P., and Hsu, C. C., 1980, “New Application of Cavity Flow Theory,” 13 Symp. Nav. Hydr., Tokyo.
14.
Brennen
,
C. E.
,
1969
, “
A numerical solution for axisymmetric cavity flows
,”
J. Fluid Mech.
,
37
, pp.
671
688
.
15.
Gakhov, F. D., 1966, Boundary Value Problems, Pergamon, New York.
16.
Pellone
,
C.
, and
Rowe
,
A.
,
1988
, “
Effect of Separation on Partial Cavitation
,”
ASME J. Fluids Eng.
,
110
, pp.
182
189
.
17.
Arakeri
,
V. H.
,
1975
, “
Viscous effects on the position of cavitation separation from smooth bodies
,”
J. Fluid Mech.
,
68
, pp.
779
799
.
18.
Dupont, P., Parkinson, E., and Avellan, F., 1993, “Cavitation development in a centrifugal pump: numerical and model tests predictions,” ASME FED, Vol. 177, pp. 63–72.
19.
Dieval, L., Arnaud, M., and Marcer, R., 1998, “Numerical modeling of unsteady cavitating flows by a VOF method.” Third Intern. Symp. on Cavitation, Grenoble, Vol. 2, pp. 243–248.
20.
Yamaguchi
,
H.
, and
Kato
,
H.
,
1983
, “
Non-linear theory for partially cavitating hydrofoils
,”
J. Soc. Nav. Arch. Jap.
,
152
, pp.
117
124
.
21.
Rowe
,
A.
, and
Blottiaux
,
O.
,
1993
, “
Aspects of Modelling Partially Cavitating Flows
,”
J. Ship Res.
,
37
, pp.
39
50
.
22.
Brewer
,
J.
, and
Kinnas
,
S.
,
1997
, “
Experiment and viscous flow analyss on a partially cavitating hydrofoi
,”
J. Ship Res.
,
41
, pp.
161
171
.
23.
Mishkevich
,
V. G.
,
1995
, “
Scale and roughness effects in ship performances in designer’s viewpoint
,”
Marine Technology
,
32
, pp.
126
131
.
24.
Amromin
,
E. L.
,
Vasilyev
,
A. V.
, and
Syrkin
,
E. N.
,
1995
, “
Propeller Blade Cavitation Inception Prediction and Problems of Blade Geometry Optimization: Recent Investigation at the Krylov Shipbuilding Research Institute
,”
J. Ship Res.
,
39
, pp.
202
212
.
25.
Amromin, E. L., 2001, “Stokes Wave Over Cavitating Vortex,” Book of Abstracts, Fourth Intern. Symp. on Cavitation, Pasadena.
26.
Ceccio
,
S. L.
, and
Brennen
,
C. E.
,
1992
, “
Dynamics of Sheet Cavities on Bodies of Revolution
ASME J. Fluids Eng.
,
114
, pp.
93
99
.
27.
Goncharov, O., and Gorshkov, A. S., 1970, “Cavitation Inception on a Body of Revolution,” Proc. Krylov Ship. Res. Inst., St Petersburg 258 (in Russian).
28.
Arakeri
,
V. H.
, and
Acosta
,
A. J.
,
1976
, “
Cavitation Inception Observation on Axissymmetric Bodies at Supercritical Reynolds Numbers
,”
J. Ship Res.
,
20
, pp.
40
50
.
You do not currently have access to this content.