A thorough numerical investigation was performed for the two-dimensional convective heat transfer of a circular cylinder in a Couette flow close to a wall in order to study the hot-wire near-wall correction. A finite-volume Navier-Stokes solver enhanced by local block refinement and multigrid acceleration guaranteed highly accurate and efficient computational results. Unlike all previous numerical simulations, a more realistic model was used in the present study by taking the heat transfer in the solid wall into account to bridge the discrepancy between the previous theoretical models and the real situation. The computed results from the present investigation show good agreement with experimental data in the literature. Reference correction curves for hot-wire anemometers with respect to different wall materials (e.g., aluminum, glass, Perspex, air, etc.) were obtained.

1.
Bruun, H. H., 1995, Hot-Wire Anemometry, Oxford University Press, Oxford.
2.
Bhatia
,
J. C.
,
Durst
,
F.
, and
Jovanovic´
,
J.
,
1982
, “
Corrections of hot-wire anemometer measurements near walls
,”
J. Fluid Mech.
,
122
, pp.
411
431
.
3.
Polyakov
,
A. F.
, and
Shindin
,
S. A.
,
1978
, “
Peculiarities of hot-wire measurements of mean velocity and temperature in the wall vicinity
,”
Lett. Heat Mass Transfer
,
5
, pp.
53
58
.
4.
Lange
,
C. F.
,
Durst
,
F.
, and
Breuer
,
M.
,
1999
, “
Wall effects on heat losses from hot-wires
,”
Int. J. Heat Mass Transf.
,
20
, pp.
34
47
.
5.
Chew
,
Y.
,
Shi
,
S.
, and
Khoo
,
B.
,
1995
, “
On the numerical near-wall corrections of single hot-wire measurements
,”
Int. J. Heat Fluid Flow
,
16
, pp.
471
476
.
6.
Chew
,
Y. T.
,
Khoo
,
B. C.
, and
Li
,
B. C.
,
1998
, “
An investigation of wall effects on hot-wire measurements using a bent sublayer probe
,”
Meas. Sci. Technol.
,
9
, pp.
67
85
.
7.
Peric´, M., 1985, “A Finite Volume Method for the Prediction of Three-dimensional Fluid Flow in Complex Ducts,” Ph. D. thesis, Imperial College, London.
8.
Barcus, M., Peric´, M. and Scheuerer, G., 1988. A control volume based full multi-grid procedure for the prediction of two-dimensional, laminar, incompressible flows. Notes on Numerical Fluid Mechanics, M. Deville, ed., Vol. 20, pp. 9–16. Braunschweig, Vieweg.
9.
Peric´
,
M.
,
1990
, “
Analysis of pressure-velocity coupling on non-orthogonal grids
,”
Numer. Heat Transfer, Part B
,
17
, pp.
63
82
.
10.
Durst, F., Lange, C. F., and Scha¨fer, M., 1995, “Local block refinement using patched grids for the parallel computation of viscous flows,” Technical Report LSTM 445/N, LSTM, Universita¨t Erlangen-Nu¨rnberg, Erlangen.
11.
Durst
,
F.
, and
Scha¨fer
,
M.
,
1996
, “
A parallel blockstructured multigrid method for the prediction of incompressible flows
,”
Int. J. Numer. Methods Fluids
,
22
, pp.
549
565
.
12.
Wills
,
J. A. B.
,
1962
, “
The correction of hot-wire readings for proximity to a solid boundary
,”
J. Fluid Mech.
,
12
, pp.
388
396
.
13.
Reichardt
,
H.
,
1940
, “
Die Wa¨rmeu¨bertragung in turbulenten Reibungsschichten
,”
Angew. Math. Mech.
,
20
, pp.
297
328
.
14.
Zemskaya
,
A.
,
Levitskiy
,
V. N.
,
Repik
,
Y. U.
, and
Sosedko
,
Y. P.
,
1979
, “
Effect of the proximity of the wall on hot-wire readings in laminar and turbulent boundary layers
,”
Fluid Mech.-Sov. Res.
,
8
, pp.
133
141
.
15.
Kostic´
,
Z.
, and
Oka
,
S.
,
1972
, “
Influence of wall proximity on hot-wire velocity measurements
,”
DISA Information
,
13
, pp.
29
33
.
16.
Hebbar
,
K. S.
,
1980
, “
Wall proximity corrections for hot-wire readings in turbulent flows
,”
DISA Information
,
25
, pp.
15
16
.
17.
Krishnamoorthy
,
L. V.
,
Wood
,
D. H.
,
Antonia
,
R. A.
, and
Chambers
,
H. J.
,
1985
, “
Effect of wire diameter and overheat ratio near a conducting wall
,”
Exp. Fluids
,
3
, No.
3
, pp.
121
127
.
18.
Janke, G., 1987, “Hot wire in wall proximity,” G. Comte-Bellot and J. Mathieu, eds., Advances in Turbulence, pp. 488–498, Springer, Berlin.
19.
Ligrani
,
P. M.
, and
Bradshaw
,
P.
,
1987
, “
Subminiature hot-wire sensors: Development and use
,”
J. Phys. E
,
20
, pp.
323
332
.
20.
Verein Deutscher Ingenieure 1994, VDI-Wa¨rmeatlas (7th ed.), VDI, Du¨sseldorf.
21.
Lange, C. F., 1997, “Numerical Predictions of Heat and Momentum Transfer from a Cylinder in Crossflow with Implications to Hot-Wire Anemometry,” Ph. D. thesis, Institute of Fluid Mechanics, Friedrich-Alexander University of Erlangen-Nu¨rnberg.
22.
Lange
,
C. F.
,
Durst
,
F.
, and
Breuer
,
M.
,
1998
, “
Momentum and heat transfer from cylinders in laminar flow at 10−4⩽Re⩽200,
Int. J. Heat Mass Transf.
,
41
, pp.
3409
3430
.
23.
Demirdzˇic´
,
I.
, and
Peric´
,
M.
,
1990
, “
Finite volume method for prediction of fluid flow in arbitrary shaped domains with moving boundaries
,”
Int. J. Numer. Methods Fluids
,
10
, pp.
771
790
.
24.
Khosla
,
P. K.
, and
Rubin
,
S. G.
,
1974
, “
A diagonally dominant second-order accurate implicit scheme
,”
Comput. Fluids
,
2
, pp.
207
209
.
25.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows
,”
Int. J. Heat Mass Transf.
,
15
, pp.
1787
1806
.
26.
Peric´
,
M.
,
Kessler
,
R.
, and
Scheuerer
,
G.
,
1988
, “
Comparison of finite-volume numerical methods with staggered and colocated grids
,”
Comput. Fluids
,
16
, pp.
389
403
.
27.
Stone
,
H. L.
,
1968
, “
Iterative solution of implicit approximations of multi-dimensional partial differential equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
5
, pp.
530
558
.
28.
Hortmann
,
M.
,
Peric´
,
M.
, and
Scheuerer
,
G.
,
1990
, “
Finite volume multigrid prediction of laminar natural convection: Bench-mark solutions
,”
Int. J. Numer. Methods Fluids
,
11
, pp.
189
207
.
29.
Ferziger, J. H., and Peric´, M., 1999, Computational Methods for Fluid Dynamics, Springer, Berlin.
30.
Shi
,
J.-M.
,
Breuer
,
M.
, and
Durst
,
F.
,
2002
, “
Wall effect on heat transfer from a micro cylinder in near-wall shear flow
,”
Int. J. Heat Mass Transf.
,
45
, pp.
1309
1320
.
You do not currently have access to this content.