The meshless local Petrov-Galerkin method has been modified to develop a meshless numerical technique to solve computational fluid dynamics and heat transfer problems. The theory behind the proposed technique, hereafter called “the meshless control volume method,” is explained and a number of examples illustrating the implementation of the method is presented. In this study, the technique is applied for one- and two-dimensional transient heat conduction as well as one- and two-dimensional advection-diffusion problems. Compared to other methods, including the exact solution, the results appear to be highly accurate for the considered cases. Being a meshless technique, the control volumes are arbitrarily chosen and possess simple shapes, which, contrary to the existing control volume methods, can overlap. The number of points within each control volume and, therefore, the degree of interpolation, can be different throughout the considered computational domain. Since the control volumes have simple shapes, the integrals can be readily evaluated.

1.
Zienkiewicz
,
O. C.
, and
Oňate
E.
, 1991, “
Finite Elements Versus Finite Volumes. Is There a Choice?
” in Non Linear Computational Mechanics. State of the Art,
P.
Wriggers
and
W.
Wagner
eds.,
Springer
, Berlin.
2.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 1995,
An Introduction to Computational Fluid Dynamics, the Finite Volume Method
,
Longman
, Loughborogh, England.
3.
Oňate
,
E.
,
Cervera
,
M.
, and
Zienkiewicz
,
O. C.
, 1994, “
A Finite Volume Format for Structural Mechanics
,”
Int. J. Numer. Methods Eng.
0029-5981,
37
, pp.
181
201
.
4.
Thompson
,
J. F.
,
Bharat
,
K. S.
, and
Weatherill
,
N. P.
, editors, 1999,
Handbook of Grid Generation
,
CRC Press
, New York.
5.
Nayroles
,
B.
,
Touzot
,
G.
, and
Villon
,
P.
, 1992, “
Generalizing the FEM: Diffuse Approximation and Diffuse Elements
,”
Comput. Mech.
0178-7675,
10
, pp.
307
318
.
6.
Belytschko
,
T.
,
Lu
,
Y.
, and
Gu
,
L.
, 1994, “
Element Free Galerkin Methods
,”
Int. J. Numer. Methods Eng.
0029-5981,
37
, pp.
229
256
.
7.
Lu
,
Y. Y.
,
Belytschko
,
T.
, and
Gu
,
L.
, 1994, “
A New Implementation of the Element Free Galerkin Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
113
, pp.
397
414
.
8.
Belytschko
,
T.
,
Krongauz
,
Y.
,
Organ
,
D.
,
Fleming
,
M.
, and
Krysl
,
P.
, 1996, “
Meshless Methods: An Overview and Recent Developments
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
139
, pp.
3
47
.
9.
Batina
,
J.
, 1993, “
A Gridless Euler∕Navier Stokes Solution Algorithm for Complex Aircraft Applications
,” AIAA 93-0333, Reno, NV.
10.
Oňate
,
E.
,
Idelsohn
,
S.
,
Zienkiewicz
,
O. C.
, and
Taylor
,
R.
, 1996, “
A Finite Point Method in Computational Mechanics: Applications to Convective Transport and Fluid Flow
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
3839
3866
.
11.
Oňate
,
E.
,
Idelsohn
,
S.
,
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
, and
Sacco
,
C.
, 1996, “
A Stabilized Finite Point Method for Analysis of Fluid Mechanics Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
139
, pp.
315
346
.
12.
Zhu
,
T.
,
Zhang
,
T. D.
, and
Atluri
,
S. N.
, 1998, “
A Local Boundary Integral Equation (LBIE) Method in Computational Mechanics, and a Meshless Discretization Approach
,”
Comput. Mech.
0178-7675,
21
, pp.
223
235
.
13.
Zhu
,
T.
,
Zhang
,
T. D.
, and
Atluri
,
S. N.
, 1998, “
A Meshless Local Boundary Integral Equation (LBIE) Method for Solving Nonlinear Problems
,”
Comput. Mech.
0178-7675,
22
, pp.
174
186
.
14.
Atluri
,
S. N.
, and
Zhu
,
T.
, 1998, “
A New Meshless Local Petrov-Galerkin (MLPG) Approach for Nonlinear Problems in Computer Modeling and Simulation
,”
Comput. Model. Simul. Eng.
1083-3455,
3
, pp.
187
196
.
15.
Zhu
,
T.
, 1999, “
A New Meshless Regular Local Boundary Integral Equation (MRLBIE) Approach
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
, pp.
1237
1252
.
16.
Atluri
,
S. N.
, and
Cho
,
J. Y.
, 1999, “
A Critical Assessment of the Truly Meshless Local Petrov-Galerkin (MLPG) and Local Boundary Integral Equation (LBIE) Methods
,”
Comput. Mech.
0178-7675,
24
, pp.
348
372
.
17.
Atluri
,
S. N.
, and
Zhu
,
T.
, 2000, “
The Local Petrov-Galerkin (MLPG) Approach for Solving Problems in Elasto-Statics
,”
Comput. Mech.
0178-7675,
25
, pp.
169
179
.
18.
Atluri
,
S. N.
, and
Shen
,
S.
, 2002,
The Meshless Local Petrov-Galerkin (MLPG) Method
,
Tech. Science Press
.
19.
Atluri
,
S. N.
, 2004,
The Meshless Method (MLPG) for Domain and Bie Discretizations
,
Tech. Science Press
.
20.
De
,
S.
, and
Bathe
,
K. J.
, 2000, “
The Method of Finite Spheres
Comput. Mech.
0178-7675,
25
, pp.
329
45
.
21.
Gu
,
Y. T.
, and
Liu
,
G. R.
, 2001, “
A Local Point Interpolation Method for Static and Dynamic Analysis of Thin Beams
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
5515
5528
.
22.
Liu
,
G. R.
, and
Gu
,
Y. T.
, 2001, “
A Local Radial Point Interpolation Method (LRPIM) for Free Vibration Analysis of 2-D Solids
J. Sound Vib.
0022-460X,
246
(
1
), pp.
29
46
.
23.
Zhang
,
J. M.
,
Yao
,
Z. H.
, and
Li
,
H.
, 2002, “
A Hybrid Boundary Node Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
, pp.
751
63
.
24.
Zhang
,
J.
,
Yao
,
Z.
, and
Tanaka
,
M.
, 2003, “
The Meshless Regular Hybrid Boundary Node Method for 2D Linear Elasticity
,”
Eng. Anal. Boundary Elem.
0955-7997,
27
, pp.
259
268
.
25.
Zhang
,
J.
, and
Yao
,
Z.
, 2004, “
The Regular Hybrid Boundary Node Method for Three-Dimensional Linear Elasticity
,”
Eng. Anal. Boundary Elem.
0955-7997,
28
, pp.
525
534
.
26.
Melenk
,
J. M.
, and
Babuška
,
I.
, 1996, “
The Partition of Unity Finite Element Method: Basic Theory and Applications
Comput. Methods Appl. Mech. Eng.
0045-7825,
139
, pp.
289
314
.
27.
De
,
S.
, and
Bathe
,
K. J.
, 2001, “
The Method of Finite Spheres with Improved Numerical Integration
,”
Comput. Struct.
0045-7949,
79
, pp.
2183
2196
.
28.
Hoffman
,
K. A.
, and
Chiang
,
S. T.
, 1993,
Computational Fluid Dynamics for Engineers
, Engineering Education System,
Wichita
, Kan.
29.
Gresho
,
P. M.
, and
Sani
,
R. L.
, 2000,
Incompressible Flow and the Finite Element Method, Volume 1: Advection-Diffusion
,
Wiley, Ltd
, Chichester, England.
30.
Zienkiewiz
,
O. C.
, and
Taylor
,
R. L.
, 1986 “
The Finite Element Method. Vol. 1: Basic Formulation and Linear Problems
,” 4th Edition,
McGraw-Hill
, London, England.
31.
Greenberg
,
M. D.
, 1978,
Foundations of Applied Mathematics
,
Prentice-Hall
, Englewood Cliffs, N.J.
32.
Richtmyer
,
R. D.
, and
Morton
,
K. W.
, 1967,
Difference Methods for Initial-Value Problems
,
Interscience Publishers
, New York.
33.
Hirsch
,
C.
, 1992,
Numerical Computation of Internal and External Flows, Volume 1: Fundamentals of Numerical Discretization
,
Wiley
, New York.
34.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
, 1982, “
Streamline Upwind∕Petrov-Galerkin Formulation for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
32
, pp.
199
258
.
35.
Lewis
,
R. W.
,
Morgan
,
K.
,
Thomas
,
H. R.
, and
Seetharamu
K. N.
, 1996,
The Finite Element Method in Heat Transfer Analysis
,
Wiley
, Chichester, England.
36.
Anderson
,
D. A.
,
Tannehill
,
J. C.
, and
Pletcher
,
R. H.
, 1984,
Computational Fluid Mechanics and Heat Transfer
,
Hemisphere
, New York.
You do not currently have access to this content.