The potential for miniaturization of analytical devices made possible by advances in micro-fabrication technology is driving demand for reliable micropumps. A wide variety of micropumps exist with many types of actuating mechanisms. One such mechanism is electrohydrodynamic (EHD) forces which rely upon Coulomb forces on free charges and/or polarization forces on induced dipoles within the liquid to induce fluid motion. EHD has been used to pump liquid phases and to displace gas–liquid interfaces for enhanced boiling heat transfer as well as to displace gas/vapor bubbles. A novel concept for using EHD polarization forces to deflect a stationary meniscus in order to compress and pump a gaseous phase is described. The pumping mechanism consists in alternative compression of two gas volumes by continuous deflection of the two pinned menisci of an entrapped liquid slug in an electric field. Using the Maxwell stress relations, the electric field strength necessary to operate the pump is determined. The operational limits are determined by analyzing the stability limits of the two menisci from inertial and viscous standpoints, corroborated with the natural frequencies of the gas–liquid interfaces.

1.
Frye-Mason
,
G. C.
et al.
, 2000, “
Hand-Held Miniature Chemical Analysis System for Detection of Trace Concentrations of Gas Phase Analytes
,”
Micro Total Analysis Systems 2000
,
Kluwer Academic
,
Enschede, The Netherlands
.
2.
Kamper
,
K.-P.
,
Dopper
,
J.
,
Ehrfeld
,
W.
, and
Oberbeck
,
S.
, 1998, “
A Self-Filling Low-Cost Membrane Micropump
,”
Proceedings 11th Annual International Workshop on MicroElectroMechanical Systems
,
Heidelberg, Germany
, January 25–29.
3.
Li
,
H. Q.
et al.
, 2000, “
A High Frequency High Flow Rate Piezoelectrically Driven MEMS Micropump
,”
Proceedings 2000 Solid-State Sensor and Actuator Workshop
,
Hilton Head, SC
, June 4–8.
4.
Garimella
,
S.
,
Killion
,
J. D.
, and
Coleman
,
J. W.
, 2005, “
An Experimentally Validated Model for Two-Phase Pressure Drop in the Intermittant Flow Regime for Circular Microchannels
,”
J. Fluid Mech.
0022-1120,
124
, pp.
205
214
.
5.
Yoon
,
H. J.
,
Sim
,
W. Y.
, and
Yang
,
S. S.
, 2001, “
The Fabrication and Test of a Phase-Change Micropump
,”
Proceedings ASME International Mechanical Engineering Congress and Exposition
,
New York
, November 11–16.
6.
Zimmermann
,
S.
,
Frank
,
J. A.
,
Liepmann
,
D.
, and
Pisano
,
A. P.
, 2004, “
A Planar Micropump Utilizing Thermopneumatic Actuation and In-Plane Flap Valves
,”
Proceedings 17th IEEE International Conference on Micro Electro Mechanical Systems
,
Maastricht, The Netherlands
, January 25–29.
7.
Grosjean
,
C.
, and
Tai
,
Y. C.
, 1999, “
A Thermopneumatic Peristaltic Micropump
,”
Proceedings Transducers 99
,
Sendai, Japan
, January 17–21.
8.
Wego
,
A.
, and
Pagel
,
L.
, 2001, “
A Self-Filling Micropump Based on PCB Technology
,”
Sens. Actuators, A
0924-4247,
88
, pp.
220
226
.
9.
Wong
,
C. C.
,
Adkins
,
D. R.
, and
Chu
,
D.
, 1996, “
Development of a Micropump for Microelectronic Cooling
,”
Micro-Electro-Mechanical Systems, Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition
,
Atlanta, GA
, Nov. 17–22, pp.
239
244
.
10.
Ahn
,
S. H.
, and
Kim
,
Y. K.
, 1998, “
Fabrication and Experiment of a Planar Micro Ion Drag Pump
,”
Sens. Actuators, A
0924-4247,
70
, pp.
1
5
.
11.
Darabi
,
J.
,
Ohadi
,
M. M.
, and
DeVoe
,
D.
, 2001, “
An Electrohydrodynamic Polarization Micropump for Electronic Cooling
,”
J. Microelectromech. Syst.
1057-7157,
10
, pp.
98
106
.
12.
Darabi
,
J.
,
Rada
,
M.
,
Ohadi
,
M. M.
, and
Lawler
,
J.
, 2002, “
Design, Fabrication and Testing of an Electrohydrodynamic Ion-Drag Micropump
,”
J. Microelectromech. Syst.
1057-7157,
11
, pp.
684
690
.
13.
Yao
,
S. H.
,
Huber
,
D. E.
,
Mikkelsen
,
J. C.
, and
Santiago
,
J. G.
, 2001, “
A Large Flow Rate Electroosmotic Pump with Micron Pores
,”
Proceedings 2001 ASME International Mechanical Engineering Congress and Exposition
,
New York
, November 11–16.
14.
Yao
,
S. H.
,
Hertzog
,
D. E.
,
Zeng
,
S. L.
,
Mikkelsen
,
J. C.
, and
Santiago
,
J. G.
, 2003, “
Porous Glass Electroosmotic Pumps: Design and Experiments
,”
J. Colloid Interface Sci.
0021-9797,
268
, pp.
143
153
.
15.
Zeng
,
S. L.
et al.
, 2002, “
Electroosmotic Flow Pumps with Polymer Frits
,”
Sens. Actuators B
0925-4005,
82
, pp.
209
212
.
16.
Laser
,
D. J.
, and
Santiago
,
J. G.
, 2004, “
A Review of Micropumps
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
R35
R64
.
17.
Damianidis
,
C.
et al.
, 1992, “
EHD Boiling Enhancement in Shell-and-Tube Evaporators and Its Application in Refrigeration Plants
,”
ASHRAE Trans.
0001-2505,
98
(
2
), pp.
462
472
.
18.
Ogata
,
J.
et al.
, 1992, “
Boiling Heat Transfer Enhancement in Tube-Bundle Evaporators Utilizing Electric Field Effects
,”
ASHRAE Trans.
0001-2505,
98
(
2
), pp.
435
444
.
19.
Yabe
,
A.
et al.
, 1992, “
Experimental Study of Electrohydrodynamically Enhanced Evaporator for Nonazeotropic Mixtures
,”
ASHRAE Trans.
0001-2505,
98
(
2
), pp.
455
461
.
20.
Yabe
,
A.
et al.
, 1982, “
Augmentation of Condensation Heat Transfer by Applying Non-Uniform Electric Fields
,”
Proceedings 7th International Heat Transfer Conference
, Munich, Germany, September 6–10, Vol.
5
, pp.
189
194
.
21.
Yamashita
,
K.
et al.
, 1991, “
Heat Transfer Characteristics on an EHD Condenser
,”
Proceedings 3rd ASME/JSME Thermal Engineering Joint Conference
,
Reno, NV
, pp.
61
67
.
22.
Sankaran
,
S.
,
Allen
,
J. S.
, and
Gumennik
,
L.
, 2003, “
Electric Field Effects on the Stability of Vapor Microlayers—Enhancement of Heat Transfer
,”
Proceedings of 2003 ASME International Mechanical Engineering Congress and RD&D Exposition
,
Washington, D.C.
, November 15–21, Paper No. IMECE2003–42974.
23.
Seyed-Yagoobi
,
J.
, and
Bryan
,
J. E.
, 1999, “
Enhancement of Heat Transfer and Mass Transport in Single-Phase and Two-Phase Flows with Electrohydrodynamics
,”
Adv. Heat Transfer
0065-2717,
33
, pp.
95
186
.
24.
Bart
,
S. F.
et al.
, 1990, “
Microfabricated Electrohydrodynamic Pumps
,”
J. Am. Ceram. Soc.
0002-7820,
21
, pp.
193
197
.
25.
Richter
,
A.
et al.
, 1991, “
The Electrohydrodynamic Micro Flow Meter
,”
Proceedings IEEE International Conference on Solid State Sensors
,
San Francisco, CA
, June 24–28, pp.
935
938
.
26.
Bryan
,
J. E.
, and
Seyed-Yagoobi
,
J.
, 1997, “
Heat Transport Enhancement of Monogroove Heat Pipe with Electrohydrodynamic Pumping
,”
J. Thermophys. Heat Transfer
0887-8722,
11
(
3
), pp.
454
460
.
27.
Jones
,
T. B.
, 1974, “
An Electrohydrodynamic Heat Pipe
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
96
(
1
), pp.
27
32
.
28.
Bologa
,
M. K.
, and
Savin
,
I. K.
, 1990, “
Electrohydrodynamic Heat Pipes
,”
Proceedings 7th International Heat Pipe Conference
,
Minsk, USSR
, May 21–25.
29.
Allen
,
J. S.
, 2003, “
An Analytical Solution for Determination of Small Contact Angles from Sessile Drops of Arbitrary Size
,”
J. Colloid Interface Sci.
0021-9797,
261
(
2
), pp.
481
489
.
30.
Melcher
,
J. R.
, 1981,
Continuum Electromechanics
,
MIT Press
,
Cambridge, MA
.
31.
Weislogel
,
M. M.
, 1998, “
Fluid Interface Phenomena in a Low-Gravity Environment: Recent Results from Drop Tower Experimentation
,”
Space Forum
,
3
, pp.
59
86
.
32.
Salzman
,
J. A.
, and
Masica
,
W. J.
, 1969, “
Lateral Sloshing in Cylinders Under Low Gravity Conditions
,” NASA TN D-5058, NASA Lewis Research Center, February.
33.
Benjamin
,
T. B.
, and
Ursell
,
F.
, 1954, “
The Stability of a Plane Free Surface of a Liquid in Vertical Periodic Motion
,”
Proc. R. Soc. London, Ser. A
1364-5021,
225
, pp.
505
515
.
You do not currently have access to this content.