Sheet cavitation has been traditionally analyzed with ideal fluid theory that employs the cavitation number as the single parameter. However, characteristics of cavitation can significantly depend on location of cavity detachment. According to known experimental data, this location is influenced by the freestream speed and the body/hydrofoil size. As shown in this paper, it takes place because of the combined effect of the Reynolds number and Weber number. Here, sheet cavitation is considered as a special kind of viscous separation caused by the cavity itself. The viscous-inviscid interaction concept is employed to analyze the entire flow. Validation of the suggested approach is provided for hydrofoils and bodies of revolution. The effects of flow speed, the body size, and its surface wettability are illustrated by comparison of computed cavity length/shape to the known experimental data. The difference between cavity detachment in laminar and turbulent boundary layers is discussed.

1.
Rowe
,
A.
, and
Blottiaux
,
O.
, 1993, “
Aspects of Modeling Partially Cavitating Flows
,”
J. Ship Res.
0022-4502,
37
, pp.
39
50
.
2.
Yamaguchi
,
H.
, and
Kato
,
H.
, 1983, “
Non-Linear Theory for Partially Cavitating Hydrofoils
,”
J. Soc. Nav. Archit. Jpn.
0514-8499,
152
, pp.
117
124
.
3.
Birkhoff
,
G.
, and
Zarantonello
,
E.
, 1957,
Jets, Wakes and Cavities
,
Academic Press
, New York.
4.
Brennen
,
C. E.
, 1969, “
A Numerical Solution for Axisymmetric Cavity Flows
,”
J. Fluid Mech.
0022-1120
37
, pp.
671
688
.
5.
Arakeri
,
V. H.
, 1975, “
Viscous Effects on the Position of Cavitation Separation From Smooth Bodies
,”
J. Fluid Mech.
0022-1120,
68
, pp.
779
799
.
6.
Keller
,
A. P.
, 2001, “
Cavitation Scale Effects Empirically Found Relations and the Correlation of Cavitation Number and Hydrodynamic Coefficients
,” Cav-2001 Symposium.
7.
Ahuja
,
V.
,
Hosangadi
,
A.
, and
Arunajatesan
,
S.
, 2001, “
Simulation of Cavitating Flows Using Hybrid Unstructured Meshes
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
331
338
.
8.
Lindau
,
J. W.
,
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
, and
Gibeling
,
H. J.
, 2002, “
High Reynolds Number, Unsteady, Multiphase CFD Modeling of Cavitating Flows
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
607
617
.
9.
Iga
,
Y.
,
Nonmi
,
N.
,
Goto
,
A.
,
Shin
,
B. R.
, and
Ikohagi
,
T.
, 2003, “
Numerical Study of Sheet Cavitation Breakoff Phenomenon on a Cascade Hydrofoil
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
643
650
.
10.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
, 2002, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
617
624
.
11.
Vaidyanathan
,
S.
,
Senocak
,
I.
,
Wu
,
J.
, and
Shyy
,
W.
, 2003, “
Sensitivity Evaluation of a Transport-Based Turbulent Cavitation Model
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
447
455
.
12.
Qin
,
Q.
,
Song
,
C. C. S.
, and
Arndt
,
R. E. A.
, 2003, “
A Virtual Single-Phase Natural Cavitation Model and Its Application to Cav2003 Hydrofoil
,” 5th Symp. on Cavitation, Osaka, Paper No. Cav03-OS-1-004.
13.
Gopalan
,
S.
, and
Katz
,
J.
, 2000, “
Flow Structure and Modeling Issues in the Closure Region of Attached Cavity
,”
Phys. Fluids
1070-6631,
12
, pp.
895
911
.
14.
Schubauer
,
G. B.
, and
Skramstad
,
H. K.
, 1948, “
Laminar Boundary-Layer Oscillations and Transition on a Flat Plate
,” NACA Report No. 909.
15.
Bourgoyne
,
D. A.
,
Hamel
,
J. M.
,
Ceccio
,
S. L.
, and
Dowling
,
D. R.
, 2003, “
Time-Averaged Flow Over a Hydrofoil at High Reynolds Number
,”
J. Fluid Mech.
0022-1120,
496
, pp.
365
404
.
16.
Arakeri
,
V. H.
, and
Acosta
,
A. J.
, 1976, “
Cavitation Inception Observation on Axisymmetric Bodies at Supercritical Reynolds Numbers
,”
J. Ship Res.
0022-4502,
20
, pp.
40
50
.
17.
Amromin
,
E. L.
, 1985, “
On Cavitation Flow Calculation for Viscous Capillary Fluid
,”
Fluid Dyn.
0015-4628,
20
, pp.
891
897
.
18.
Amromin
,
E. L.
, 2002, “
Scale Effect of Cavitation Inception on a 2D Eppler Hydrofoil
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
186
193
.
19.
Brewer
,
W. H.
, and
Kinnas
,
S. I.
, 1997, “
Experiment and Viscous Flow Analysis on a Partially Cavitating Hydrofoil
,”
J. Ship Res.
0022-4502,
41
, pp.
161
171
.
20.
Chahine
,
G. L.
, and
Hsiao
,
C.-T.
, 2000, “
Modeling 3D Unsteady Sheet Cavities Using a Coupled UnRANS-BEM Code
,” 23rd Symposium on Naval Hydrodynamics.
21.
Castillo
,
L.
,
Wang
,
X.
, and
George
,
W. K.
, 2004, “
Separation Criterion for Turbulent Boundary Layers via Similarity Analysis
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
297
304
.
22.
Roberts
,
W. B.
, 1980, “
Calculation of Laminar Separation Bubbles and Their Effect on Airfoil Performances
,”
AIAA J.
0001-1452,
18
, pp.
25
31
.
23.
Amromin
,
E. L.
, and
Ivanov
,
A. N.
, 1982, “
Determination of Cavity Separation Points on Body in Viscous Capillary Fluid
,”
Sov. Phys. Dokl.
0038-5689,
262
, pp.
823
826
.
24.
Arndt
,
R. A. E.
, 2002, “
Cavitation in Vortical Flow
,”
Annu. Rev. Fluid Mech.
0066-4189,
34
, pp.
143
176
.
25.
Ceccio
,
S. L.
, and
Brennen
,
C. E.
, 1992, “
Dynamics of Sheet Cavities on Bodies of Revolution
,”
ASME J. Fluids Eng.
0098-2202,
114
, pp.
93
99
.
26.
Billet
,
M. L.
, and
Holl
,
J. W.
, 1981, “
Scale Effects on Various Types of Limited Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
103
, pp.
405
414
.
You do not currently have access to this content.