In the present study, a compact analytical model is developed to determine the pressure drop of fully-developed, incompressible, and constant properties slip-flow through arbitrary cross section microchannels. An averaged first-order Maxwell slip boundary condition is considered. Introducing a relative velocity, the difference between the bulk flow and the boundary velocities, the axial momentum reduces to Poisson’s equation with homogeneous boundary condition. Square root of area is selected as the characteristic length scale. The model of Bahrami et al. (2006, “Pressure Drop of Laminar, Fully Developed Flow in Microchannels of Arbitrary Cross Section,” ASME J. Fluids Eng., 128, pp. 1036–1044), which was developed for no-slip boundary condition, is extended to cover the slip-flow regime in this study. The proposed model for pressure drop is a function of geometrical parameters of the channel: cross sectional area, perimeter, polar moment of inertia, and the Knudsen number. The model is successfully validated against existing numerical and experimental data collected from different sources in literature for several shapes, including circular, rectangular, trapezoidal, and double-trapezoidal cross sections and a variety of gases such as nitrogen, argon, and helium.

1.
Tuckerman
,
D. B.
, and
Pease
,
R. F.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
2
, pp.
126
129
.
2.
Hsieh
,
S. S.
,
Tsai
,
H. H.
,
Lin
,
C. Y.
,
Huang
,
C. F.
, and
Chien
,
C. M.
, 2004, “
Gas Flow in a Long Microchannel
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3877
3887
.
3.
Zhu
,
X.
,
Liao
,
Q.
, and
Xin
,
M. D.
, 2006, “
Gas Flow in Microchannel of Arbitrary Shape in Slip Flow Regime
,”
Microscale Thermophys. Eng.
1089-3954,
10
(
1
), pp.
41
54
.
4.
Kim
,
M. S.
,
Araki
,
T.
,
Inaoka
,
K.
, and
Suzuki
,
K.
, 2000, “
Gas Flow Characteristics in Microtubes
,”
JSME Int. J., Ser. B
,
43
(
4
), pp.
634
639
. 0913-185X
5.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2006, “
Pressure Drop of Fully-Developed, Laminar Flow in Rough Microtubes
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
632
637
.
6.
Morini
,
G. L.
, 2004, “
Laminar-to-Turbulent Flow Transition in Microchannels
,”
Microscale Thermophys. Eng.
1089-3954,
8
, pp.
15
30
.
7.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
Friction Factors in Smooth Trapezoidal Silicon Microchannels With Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2519
2525
.
8.
Renksizbulut
,
M.
,
Niazmand
,
H.
, and
Tercan
,
G.
, 2006, “
Slip Flow and Heat Transfer in Rectangular Microchannels With Constant Wall Temperature
,”
Int. J. Therm. Sci.
1290-0729,
45
, pp.
870
881
.
9.
Pfahler
,
J.
,
Harley
,
J.
,
Bau
,
H.
, and
Zemel
,
J. N.
, 1991, “
Gas and Liquid Transport in Small Channels
,”
Micromechanical Sensors, and Actuators Systems
, ASME DSC 32, Winter Annual Meeting, Atlanta, GA, pp.
49
58
.
10.
Ebert
,
W. A.
, and
Sparrow
,
E. M.
, 1965, “
Slip Flow in Rectangular and Annular Ducts
,”
ASME J. Basic Eng.
0021-9223,
87
, pp.
1018
1024
.
11.
Harley
,
J.
,
Huang
,
Y.
,
Bau
,
H.
, and
Zemel
,
J. N.
, 1995, “
Gas Flow in Microchannels
,”
J. Fluid Mech.
0022-1120,
284
, pp.
257
274
.
12.
Morini
,
G. L.
, and
Spiga
,
M.
, 1998, “
Slip Flow in Rectangular Microtubes
,”
Microscale Thermophys. Eng.
1089-3954,
2
(
4
), pp.
273
282
.
13.
Beskok
,
A.
, and
Karniadakis
,
G. E.
, 1999, “
A Model for Flows in Channels, Pipes, and Ducts at Micro and Nano Scales
,”
Microscale Thermophys. Eng.
1089-3954,
3
, pp.
43
77
.
14.
Choi
,
S. B.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
, 1991, “
Fluid Flow and Heat Transfer in Microtubes
,”
Micromechanical Sensors, Actuators, and Systems
, ASME DSC
32
, Winter Annual Meeting, Atlanta, GA, pp.
123
134
.
15.
Yu
,
D.
,
Warrington
,
R.
,
Barron
,
R.
, and
Ameel
,
T.
, 1995, “An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtubes,” ASME/JSME Thermal Engineering Conference, Vol. 1, pp. 523–530.
16.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
, 1997, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
1057-7157,
6
(
2
), pp.
167
178
.
17.
Arkilic
,
E. B.
,
Breuer
,
K. S.
, and
Schmidt
,
M. A.
, 2001, “
Mass Flow and Tangential Momentum Accommodation in Silicon Micromachined Channels
,”
J. Fluid Mech.
0022-1120,
437
, pp.
29
43
.
18.
Araki
,
T.
,
Kim
,
M. S.
,
Hiroshi
,
I.
, and
Suzuki
,
K.
, 2000, “An Experimental Investigation of Gaseous Flow Characteristics in Microchannels,”
Proceedings of International Conference on Heat Transfer and Transport Phenomena in Microscale
, Begell House, New York, pp. 155–161.
19.
Morini
,
G. L.
,
Spiga
,
M.
, and
Tartarini
,
P.
, 2004, “
The Rarefaction Effect on the Friction Factor of Gas Flow in Micro/Nano-Channels
,”
Superlattices Microstruct.
0749-6036,
35
(
3–6
), pp.
587
599
.
20.
Khan
,
W. A.
, and
Yovanovich
,
M. M.
, 2007, “
Analytical Modeling of Fluid Flow and Heat Transfer in Micro/Nano-Channel Heat Sinks
,”
Proceedings of the IPACK2007
, Vancouver, BC, Canada.
21.
Duan
,
Z.
, and
Muzychka
,
Y. S.
, 2007, “
Slip Flow in Non-Circular Microchannels
,”
Microfluid. Nanofluid.
1613-4982,
3
, pp.
473
484
.
22.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2006, “
Pressure Drop of Laminar, Fully Developed Flow in Microchannels of Arbitrary Cross Section
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
1036
1044
.
23.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2007, “
A Novel Solution for Pressure Drop in Singly Connected Microchannels of Arbitrary Cross Section
,”
Int. J. Heat Mass Transfer
,
50
, pp.
2492
2502
. 0017-9310
24.
White
,
F. M.
, 1984,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
25.
Roy
,
S.
,
Raju
,
R.
,
Chuang
,
H. F.
,
Cruden
,
B. A.
, and
Meyyappan
,
M.
, 2003, “
Modeling Gas Flow Through Microchannels and Nanopores
,”
J. Appl. Phys.
0021-8979,
93
(
8
), pp.
4870
4879
.
26.
Karniadakis
,
G. E.
, and
Beskok
,
A.
, 2002,
Micro Flows: Fundamentals and Simulation
,
Springer
,
New York
.
27.
Yovanovich
,
M. M.
, 1974, “
A General Expression for Predicting Conduction Shape Factors
,”
AIAA, Thermophysics and Space Craft Control
,
Cambridge, Mass. London: MIT Press
,
35
, pp.
265
291
.
28.
Yovanovich
,
M. M.
, 1987, “
New Nusselt and Sherwood Numbers for Arbitrary Isopotential Bodies at Near Zero Peclet and Rayleigh Numbers
,”
AIAA 22nd Thermophysics Conference
, Honolulu, HI.
29.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
, 2002,
Laminar Flow Friction and Heat Transfer in Non-Circular Ducts and Channels Part
,
1: Hydrodynamic Problem,” Compact Heat Exchangers: A Festschrift on the 60th Birthday of Ramesh K. Shah
,
Grenoble, France
, pp.
123
130
.
30.
Bejan
,
A.
, 1995,
Convection Heat Transfer
,
Wiley
,
Englewood Cliffs, NJ
.
31.
Morini
,
G. L.
,
Lorenzini
,
M.
, and
Spiga
,
M.
, 2005, “
A Criterion for Experimental Validation of Slip-Flow Models for Incompressible Rarefied Gases Through Microchannels
,”
Microfluid. Nanofluid.
1613-4982,
1
, pp.
190
196
.
You do not currently have access to this content.