Tip vortices generated by marine lifting surfaces such as propeller blades, ship rudders, hydrofoil wings, and antiroll fins can lead to cavitation. Prediction of the onset of this cavitation depends on model tests at Reynolds numbers much lower than those for the corresponding full-scale flows. The effect of Reynolds number variations on the scaling of tip vortex cavitation inception is investigated using a theoretical flow similarity approach. The ratio of the circulations in the full-scale and model-scale trailing vortices is obtained by assuming that the spanwise distributions of the section lift coefficients are the same between the model-scale and the full-scale. The vortex pressure distributions and core sizes are derived using the Rankine vortex model and McCormick’s assumption about the dependence of the vortex core size on the boundary layer thickness at the tip region. Using a logarithmic law to describe the velocity profile in the boundary layer over a large range of Reynolds number, the boundary layer thickness becomes dependent on the Reynolds number to a varying power. In deriving the scaling of the cavitation inception index as the ratio of Reynolds numbers to an exponent m, the values of m are not constant and are dependent on the values of the model- and full-scale Reynolds numbers themselves. This contrasts traditional scaling for which m is treated as a fixed value that is independent of Reynolds numbers. At very high Reynolds numbers, the present theory predicts the value of m to approach zero, consistent with the trend of these flows to become inviscid. Comparison of the present theory with available experimental data shows promising results, especially with recent results from high Reynolds number tests. Numerical examples of the values of m are given for different model- to full-scale sizes and Reynolds numbers.

1.
Cavitation Committee
, 1990,
19th ITTC
, Madrid, Spain.
2.
Arndt
,
R.
, and
Dugue
,
C.
, 1992, “
Recent Advances in Tip Vortex Cavitation Research
,”
International Symposium on Propulsors and Cavitation
, Hamburg, Germany.
3.
Maines
,
B. H.
, and
Arndt
,
R. E. A.
, 1993, “
Viscous Effects on Tip Vortex Cavitation
,”
FED (Am. Soc. Mech. Eng.)
0888-8116,
177
, pp.
125
132
.
4.
Loftin
,
L. K.
, and
Smith
,
H. A.
, 1949, “
Aerodynamic Characteristics of 15 NACA Airfoil Sections at Reynolds Numbers From 0.7×106 to 9.0×106
,” Paper No. NACA TN 1945.
5.
Jessup
,
S. D.
,
Remmers
,
K. D.
, and
Berberich
,
W. G.
, 1993, “
Comparative Cavitation Performance of a Naval Surface Propeller
,”
ASME Symposium on Cavitation Inception
, New Orleans, LA.
6.
McCormick
,
B. W.
, 1954, “
A Study of the Minimum Pressure in a Trailing Vortex System
,” Ph.D. dissertation, Penn State University, State College, PA.
7.
McCormick
,
B. W.
, 1962, “
On Cavitation Produced by a Vortex Trailing From a Lifting Surface
,”
J. Basic Eng.
0021-9223,
84
, pp.
369
379
.
8.
Liang
,
X.
, and
Ramaprian
,
B. R.
, 1991, “
Visualization of the Wing-Tip Vortex in Temporal and Spatial Pressure Gradients
,”
ASME J. Fluids Eng.
0098-2202,
113
, pp.
511
515
.
9.
Baker
,
G. R.
,
Barker
,
S. J.
,
Bofat
,
K. K.
, and
Saffman
,
P. G.
, 1974, “
Laser Anemometer Measurements of Trailing Vortices in Water
,”
J. Fluid Mech.
0022-1120,
65
(
2
), pp.
325
336
.
10.
Fruman
,
D. H.
,
Dugue
,
C.
, and
Cerruti
,
P.
, 1991, “
Tip Vortex Roll-Up and Cavitation
,”
FED (Am. Soc. Mech. Eng.)
0888-8116,
109
, pp.
43
48
.
11.
Arndt
,
R. E. A.
, 2002, “
Cavitation in Vortical Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
34
, pp.
143
175
.
12.
Friesch
,
J.
, and
Johannsen
,
C.
, 1995, “
Study on Tip Vortex Cavitation Inception for Navy Propellers
,”
International Symposium on Cavitation, CAV 1995
, Deauville, France.
13.
Fruman
,
D.
,
Dugue
,
C.
,
Pauchet
,
A.
,
Cerruti
,
P.
, and
Briancon-Marjolet
,
L.
, 1994, “
Tip Vortex Roll-Up and Cavitation
,”
19th Symposium of Naval Hydrodynamics, ONR
, Washington, DC.
14.
Stinebring
,
D. R.
,
Farrell
,
K. J.
,
Billet
,
M. L.
, 1991, “
The Structure of a Three-Dimensional Tip Vortex at High Reynolds Numbers
,”
ASME J. Fluids Eng.
0098-2202,
113
(
3
), pp.
496
503
.
15.
Farrell
,
K. J.
, and
Billet
,
M. L.
, 1994, “
A Correlation of Leakage Vortex Cavitation in Axial-Flow Pumps
,”
ASME J. Fluids Eng.
0098-2202,
116
, pp.
551
557
.
16.
Schlichting
,
H.
, 1979,
Boundary Layer Theory
,
McGraw-Hill
,
New York
.
17.
Brewer
,
J. H.
, and
Park
,
J. T.
, 2001, “
High Reynolds Number Boundary Layer Scaling on a Large Hydrofoil (HIFOIL)
,” Paper No. NSWCCD-50-TR-2001/08.
18.
von Karman
,
Th.
, 1921, “
Laminar and Turbulent Friction
,”
Z. Angew. Math. Mech.
0044-2267,
1
(
4
), pp.
233
252
.
19.
Goldstein
,
S.
, 1935, “
On the Resistance to the Rotation of a Disc Immersed in a Liquid
,”
Proc. Cambridge Philos. Soc.
0068-6735,
31
, pp.
232
241
.
20.
Judge
,
C.
,
Oweis
,
G.
,
Ceccio
,
S.
,
Jessup
,
S.
,
Chesnakas
,
C.
, and
Fry
,
D.
, 1991, “
Tip-Leakage Vortex Inception on a Ducted Rotor
,”
Fourth International Symposium on Cavitation, CAV 2001
, Pasadena, CA.
21.
Platzer
,
G. P.
, and
Souders
,
W. G.
, 1980, “
Tip Vortex Cavitation Characteristics and Delay on a Three-Dimensional Hydrofoil
,”
19th ATTC Conference
, Madrid, Spain.
22.
Hsiao
,
C. -T.
, and
Chahine
,
G. L.
, 2005, “
Scaling of Tip Vortex Cavitation Inception Noise With a Bubble Dynamics Model Accounting for Nuclei Size Distribution
,”
ASME J. Fluid Eng.
,
127
, pp.
55
65
. 0008-1981
23.
Weitendorf
,
E. A.
, 1979,
Conclusions From Full Scale and Model Investigations of the Free Air Content and of the Propeller-Excited Hull Pressure Amplitudes Due to Cavitation
,
ASME International Symposium on Cavitation Inception
, New York.
24.
Strasberg
,
M.
, 1977, “
Propeller Cavitation Noise After 35 Years of Study
,”
Proceedings of the ASME Symposium on Noise and Fluids Engineering
, Atlanta, GA.
25.
Shen
,
Y. T.
, and
Strasberg
,
M.
, 2003, “
The Effect of Scale on Propeller Tip Vortex Cavitation Noise
,” Paper No. NSWCCD-50-TR-2003/057.
You do not currently have access to this content.